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Abstract

We suggest a fast and accurate algorithm to compute ARLs of CUSUM chart for controling process variance.

The algorithm solves the characteristic integral equations of CUSUM chart (for controling variance). The

algorithm is directly applicable for the cases of odd sample sizes. When the sample size is even, by using

well-known approximation algorithm combinedly with the new algorithm for neighboring odd sample sizes,

we can also evaluate the ARLs of CUSUM charts efficiently and accurately. Based on the new algorithm,

we consider the optimal design of upward and downward CUSUM charts for controling process variance.

Keywords: CUSUM, process variance, chi-squared distribution.

1. Introduction

Statistical process control is an important tool for quality control. X-bar chart and R chart are

well-known methods of statistical process control. X-bar chart is used to control the process mean.

R chart and S chart aim to control process variance. Control chart techniques are viewed as an

application of statistical hypotheses test. Control chart is used to test whether the process is

out-of-control or in-control, repeatedly.

In hypotheses testing, Wald’s sequential probability ratio test(SPRT) is known as the best test-

ing method, in the meaning that it achieves the pre-specified type-I error probability and type-II

error probability at the smallest sample size (and so at the minimum sample cost). Cumulative

sum(CUSUM) chart is an application of SPRT to process control problem. The CUSUM chart

suggested by Page (1954) is a sequential version of X-bar chart for controling process mean. The

sequential version of S chart is also studied by many authors. Ramirez (1989), Ramirez and Juan

(1989), Box and Ramirez (1991a, 1991b, 1991c), Howell (1987), Chang and Gan (1995) considered

and tested CUSUM procedures for controling process variance.

Ramirez and his co-authors considered statistics of the form St =
∑t
i=1{(Xi−µ)2−k} for normally

distributed quality characteristic Xi with mean µ. When each sample Xi has multiple observations

(Xi,1, . . . , Xi,n), they suggested to use St =
∑t
i=1{(X̄i −

¯̄X)2 − k} where X̄i denotes the mean of
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ith sample, i.e. X̄i = (1/n)
∑n
j=1Xi,j , and ¯̄X denotes the total mean. The value k is the reference

value. It is pointed by authors that the statistic St suggested by Ramirez and his co-authors is

more adequate to control process mean rather than to process variance (Chang and Gan, 1995).

Chang and Gan (1995) considered two kinds of CUSUM charts for controling process variance. The

one is variance CUSUM, using the sample variance Qi = 1/(n− 1)
∑n
j=1(Xi,j − X̄i)2 of each sam-

ple, and the other is log-variance CUSUM, using logarithmic-transformed sample variance log(Qi).

Chang and Gan (1995) studied the properties of these two versions and compared with others. They

showed variance CUSUM has better performance than log-variance CUSUM. However, they sug-

gested to use log-variance CUSUM, in the reason that the average run length(ARL) of log-variance

CUSUM is easily approximated by using the well-known results of CUSUM chart for controling

mean of normally distributed quality characteristic. They mentioned, computing ARLs of variance

CUSUM is ‘intractable’ and needs ‘extensive computing work’. To evaluate the performance of

variance CUSUM, for comparison with other procedures, they relied on simulation method. Also

they mentioned, they used trial and error approach for selecting the appropriate values of design

parameters of log-variance CUSUM, because the log-variance CUSUM does not follow the exact

distribution assumed in the model.

The sample variance of normally distributed observations follows the chi-squared distribution, which

is a case of gamma distribution. When each sample has n observations and the observations are

normally distributed with mean µ and variance σ2, the sample variance follows gamma distribution

of shape parameter ν = (n − 1)/2 and scale parameter σ2/ν; say G(ν, σ2/ν). The SPRT and

CUSUM procedures on gamma distribution has studied by many authors. Regula (1975) tried a

simple approximation method in a very restrictive case. Vardeman and Ray (1985) studied ARLs of

CUSUM chart for the quantities distributed by exponential distribution, i.e. G(1, 1). Stadje (1987)

obtained the exact solutions of the integral equations describing the characteristics of SPRT for

exponential distribution. Also, Gan (1992), Gan and Choi (1994), Gan (1994) studied more specific

topics related to CUSUM procedures on exponentially distributed quantities. Kohlruss (1994)

studied to extend the results to Erlang distribution, i.e. G(n, 1) with integer shape parameter n.

Lee (2004) suggested a method unifying all related previous researches, by extending the method

used by Vardeman and Ray (1985).

In this paper, we propose a fast and accurate algorithm to compute ARLs of variance CUSUM

chart. The algorithm is developed based on the solutions shown by Lee (2004). We derived simpler

forms of the solutions than the ones in there, and devised an algorithm to avoid numerical difficulty

in handling ill-conditioned matrix. The solution is only applicable for the cases of odd sample

sizes. When the sample size n is even, we use the well-known approximation algorithm. Easy-to-

compute information for neighboring odd integers can be used to increase the speed of approximation

algorithm for even integers. Based on the new much faster algorithm, we consider the optimal design

of variance CUSUM charts in both of upward and downward direction.

2. Variance CUSUM Charts

When the quality characteristic is assumed to be normally distributed with a process mean µ and a

process variance σ2, the process mean is controlled by monitoring the sample mean X̄i. The sample

variance Qi = 1/(n− 1)
∑n
j=1(Xi,j − X̄i)2 is a statistic to monitor the process variance σ2 and it

follows gamma distribution with shape parameter ν = (n− 1)/2 and scale parameter σ2/ν.

Controlling the process variance σ2 is performed by monitoring whether the sample variance is far
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from the pre-specified value σ2
0 , which is referred to ‘in-control variance’. In-control variance σ2

0 can

be estimated from the past experience of the process performance. For more details about how to

estimate σ2
0 , refer to Lucas (1976). In designing control schemes, we need a value σ2

1 for referencing

the variance of process in out-of-control state. We call σ2
1 ‘out-of-control variance’. The statistical

hypotheses test with the statistic Qi, for the hypotheses H1 : σ2 = σ2
1 against H0 : σ2 = σ2

0

(σ2
0 6= σ2

1) is equivalent to the test for H1 : σ2/σ2
0 = σ2

1/σ
2
0 against H0 : σ2/σ2

0 = 1 with the

statistic Qi/σ
2
0 . We call the property invariance of scale transformation for testing variance. From

the property, we assume σ2
0 = 1 without loss of generality.

The SPRT for the hypotheses H1 : σ2 = σ2
1 (σ2

1 6= 1) against H0 : σ2 = 1 is performed by following

steps; For each t = 1, 2, . . . and appropriately defined l and h (l ≤ 0 ≤ h) and R0 = s ∈ [l, h],

S1) set Rt = Rt−1 + (Qt − k), where k = (σ2
1 log σ2

1)/(σ2
1 − 1),

S2) if Rt > h, then conclude H1 is right, if Rt < l, then conclude H0 is right,

S3) otherwise take a more sample, i.e. set t to be t+ 1 and go on.

The CUSUM procedure to control the process variance is a variant of the SPRT. The CUSUM

procedure issues the out-of-control signal when RUt > h for upward CUSUM to detect upward

change (σ2
1 > 1), and when RDt < l for downward CUSUM to detect downward change (σ2

1 < 1).

The CUSUM statistics RUt and RDt are updated by the rule,

RUt = max(0, RUt−1) + (Qt − k) and RDt = min(0, RDt−1) + (Qt − k)

for each t = 1, 2, . . ., where RU0 = s ∈ [0, h] and RD0 = s ∈ [0, h]. After issuing the signal, the same

procedure is repeated with the same initial value s.

Important characteristics of CUSUM charts are summarized by average run length(ARL). We will

use H(s) and L(s) to denote the ARLs of upward CUSUM and downward CUSUM as functions

of initial value s. The functions H(s) and L(s) are written in the form of integral equations, as

follows;

H(s) = 1 +H(0)Fν(k − s) +

∫ h

0

H(x)fν(x− s+ k)dx, s ∈ [0, h], (2.1)

L(s) = 1 + L(0)(1− Fν(k − s)) +

∫ 0

l

L(x)fν(x− s+ k)dx, s ∈ [l, 0], (2.2)

where Fν(x) and fν(x) are the cumulative distribution function(CDF) and the probability density

function(PDF) of each Qi. That is, Fν(x) and fν(x) are CDF and PDF of gamma distribution

G(ν, σ2/ν), respectively.

When we need to distinguish the variables and the parameters between upward procedure and

downward procedure, indexed notations will be used; RUt , hU , kU , sU for upward scheme, RDt , lD,

kD, sD for downward scheme. Since the boundary value l is negative, we define a new positive value

hD = −l. As long as there is no confusion, we will drop the indices. The ARL function L(s) for

downward CUSUM is defined on negative value s ∈ [−hD, 0]. When we need parallel comparison

with H(s) and L(s), we use the function Lp(s) = L(s+ h) shifted to the region s ∈ [0, h].

To detect both of upward and downward changes of variance, two-sided CUSUM procedure is used.

Two-sided CUSUM chart is a combined procedure of upward CUSUM and downward CUSUM as

component procedures. As long as the out-of-control signals are not issued simultaneously from

the component procedures, the ARL of two-sided CUSUM is given as the half of harmonic mean of
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ARLs of two component one-sided procedures. More generally, when HL(sU , sD) denotes the ARL

function of two-sided CUSUM procedure w.r.t. the initial values sU and sD, Lucas (1985) showed

HL(sU , sD) =
H(sU )L(0) +H(0)L(sD)−H(0)L(0)

H(0) + L(0)
.

For more details, refer Lucas (1985).

3. Solution and Numerical Algorithm

Out of many ways to evaluate ARL of CUSUM chart, the most reliable way is to solve the char-

acteristic integral equation directly. Goel and Wu (1971) solved the characteristic equation for

CUSUM chart for controling process mean, numerically by using Gaussian Hermite quadrature. In

this section, we show the algorithms to solve the characteristic integral Equations (2.1) and (2.2)

for variance CUSUM.

The integral Equations (2.1) and (2.2) can be solved analytically when the sample size n = 2ν+1 is

odd. As pointed by Kohlruss (1994), the kernel fν(x−s+k) of the Equations (2.1) and (2.2) for odd

integer n is separable and the equation can be solved analytically. On the other hand, the kernel for

even integer n is not separable and we have not found the method to solve the equations analytically

for even integer n. Only numerical methods were tested for even integer n. The numerical method

is relatively simple to implement and applicable to both of even and odd integers, but the method

is less accurate and needs more time for computing. In the followings we will review the numerical

approximation method first, and then provide a fast analytic algorithm applicable for odd integer

n.

3.1. Review of numerical methods

Lee (2004) showed that the analytic solutions of Equations (2.1) and (2.2) for odd sample size have

the form of piecewise polynomial. The solutions have different form on each interval [ik, (i+ 1)k],

i = 0, 1, . . .. Gaussian quadrature method applied to polynomial is known to give highly precise

results, but the accuracy of the results to piecewise polynomials are not guaranteed. When we

tested to our cases of odd sample size, which is expected to have monotone solution, the results

obtained by Gaussian quadratures are even oscillating up and down at their tail parts. The form

of the kernel fν(x− s+ k), which is differently defined before and after of x = s− k, is attributable

to the inaccuracy of the Gaussian quadrature methods for this problem.

Numerically approximated solutions of Equations (2.1) and (2.2) for a positive integer n are tested

by Ramirez and Juan (1989). Instead of using abscissa of Gaussian quadrature, the method used by

Ramirez and Juan (1989) is based on simple assumption that the solutions are nearly constant in a

very short interval. The approximated algorithm is much slower than Gaussian quadrature method,

but gives relatively better results. The method used by Ramirez and Juan (1989) is basically

equivalent to the discrete Markov chain approximation method suggested by Brook and Evans

(1972) in evaluating ARLs of CUSUM. In the followings, we explain the method to approximate

the functions H(s). The function L(s) is approximated in the same way.

Let {a0, . . . , aq} be an evenly spaced partition of [0, h], satisfying a0 = 0 and aq = h. Take

sequences of xj and sj by xj = sj = (aj−1 + aj)/2 for j = 1, 2, . . . , q. The positive integer q can be

chosen arbitrary in the consideration of numerical precision. For notational convenience, assume
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also x0 = s0 = a0 and a−1 = −∞. Then, the values H(sj), j = 0, 1, . . . , q are approximated by the

values Ĥ(sj) satisfying

Ĥ(si) = 1 + Ĥ(x0)Fν(k − si) +

q∑
j=1

Ĥ(xj)

∫ aj

aj−1

fν(xj − si + k)dx, j = 0, 1, . . . , q. (3.1)

The Equation (3.1) is simply converted to matrix form (I − B)Ĥ = 1q+1, where the vector Ĥ is

(Ĥ(s0), . . . , Ĥ(sq))
′, and the matrix B is the (q + 1)× (q + 1) matrix of which (i, j)th elements are

bi,j = Fν(aj − si + k)− Fν(aj−1 − si + k), for i, j = 0, . . . , q. The vector 1q+1 is the column vector

of size q + 1, all of which elements are 1.

The numerical approximation method has advantage that the algorithm applicable for any positive

integer n, but the method is much slower than the algorithm based on analytic solution. To

approximate precisely, q must be quite large. However, the larger q is used, the more times are

required for computing and the more numerical errors come into the result cumulatively. And even,

we can not distinguish, only from the approximated results, whether the used integer q is sufficiently

large and the result is sufficiently accurate. The approximation algorithm is practically less useful

because of the questionable accuracy of the results as well as its slow speed. In the next we suggest

faster and more reliable algorithm.

3.2. Algorithm for odd sample size

When the sample size n is odd, the kernel fν(x−s+k) of the Equations (2.1) and (2.2) is separable

and the equation can be solved analytically. Following the approach to obtain the solutions of the

characteristic integral equations, we suggest an efficient algorithm in the followings.

When the sample size n = 2ν + 1 is odd, the sample variance Qi follows the gamma distribution

G(ν, σ2/ν). From the property of invariance of scale transformation, we can assume that Qi follows

the gamma distribution G(ν, 1) with integer shape parameter ν and scale parameter 1. We use

the notations Hν(s) and Hν,i(s) to denote H(s) for given ν and H(s) on the interval [ik, (i+ 1)k],

i = 0, 1, . . . ,m, respectively. Here and hereafter m denotes the smallest integer greater than or

equal to h/k. The solution of the integral Equation (2.1) is

Hν,i(s) = 1 + i+H(0)− es−ik
i∑

j=0

ν−1∑
l=0

al,jel+ν(i−j)((l + i− j)k − s),

H(0) = −m+

m∑
j=0

ν−1∑
l=0

αl,jp
j
0,l(h),

where eν(x) =
∑ν
k=0 x

k/k! and pju,l(s) = eh−mk+kel+ν(m−j)−u((l+m− j− 1)k− s). The constants

αl,j , j = 0, 1, . . . ,m, l = 0, 1, . . . , ν − 1 are determined by

i∑
j=0

ν−1∑
l=0

qi,ju,lαl,j = 1 and

m∑
j=0

ν−1∑
l=0

qm+1,j
u,l αl,j = δ0(u),

for i = 1, 2, . . . ,m and u = 0, 1, . . . , ν − 1, where

qi,ju,l = el+ν(i−j)−u((l − j)k)− ekel+ν(i−j−1)−u((l − j − 1)k),

qm+1,j
0,l = el(lk) · δ0(j),

qm+1,j
u,l = pju,l(h)− pju−1,l(h).
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The function δc(j) has values 1 when j = c and 0 when j 6= c. For the downward CUSUM, we have

Lν,i(s) = 1 + i− es−ik
i∑

j=0

ν−1∑
l=0

al,jel+ν(i−j)((l + i− j)k − s),

L(0) = m− e−h
m−1∑
j=0

ν−1∑
l=0

al,jp
j
ν,l(0).

The constants αl,j , j = 0, 1, . . . ,m, l = 0, 1, . . . , ν− 1 for downward CUSUM are determined by the

conditions;

i∑
j=0

ν−1∑
l=0

qi,ju,lαl,j = 1 and

m∑
j=0

ν−1∑
l=0

qm+1,j
u,l αl,j = d(u),

for i = 1, . . . ,m and u = 0, . . . , ν − 1, where

d(u) = m
[
eν−u−1(−h)eh − 1

]
,

qm+1,j
u,l = (1− δm(j))eν−u−1(−h)pjν,l(0)− pju,l(h).

The conditions are shown in simpler matrix form. Assume αααj ’s are column vectors of size ν, of

which elements are αl,j , l = 0, . . . , ν − 1, and qqqi,j ’s are matrices {qi,ju,l}u,l of size ν × ν. Also,

ddd is a column vector with elements δ0(u), u = 0, 1, . . . , ν − 1 for upward CUSUM or d(u), u =

0, 1, . . . , ν − 1 for downward CUSUM. The conditions are re-expressed in linear equation Qααα = δδδ,

where ααα = (αααt0,ααα
t
1, . . . ,ααα

t
m)t is a column vector of size ν(m+ 1), and

Q =


qqq1,0 qqq1,1 000 · · · 000

qqq2,0 qqq2,1 qqq2,2 · · · 000

· · · · · · · · · · · · 000

qqqm,0 qqqm,1 qqqm,2 · · · qqqm,m

qqq(m+1),0 qqq(m+1),1 qqq(m+1),2 · · · qqq(m+1),m

 and δδδ =


111ν
111ν
· · ·
111ν
ddd


are block matrix of size ν(m + 1) × ν(m + 1) and column vector of size ν(m + 1), respectively.

The constants αl,j ’s are obtained by ααα = Q−1δδδ. Since the matrix Q goes to be ill-conditioned for

large ν and m, we need to devise an algorithm to avoid the difficulty of ill-conditioned property in

inverting the matrix Q for large ν and m. We used the block structure of the matrix Q and applied

block-wise forward substitution method, as follows.

Algorithm: follow steps 1, 2, 3

Step 1. vvv(m+1),j = qqq(m+1),j , j = 0, 1, . . . ,m and bbbm+1 = ddd

Step 2. In the order of i = m, (m− 1), . . . , 1

vvvi,j = qqqi,j − qqqi,i[vvv(i+1),i]−1vvv(i+1),j , j = 0, 1, . . . , (i− 1)

bbbi = 111ν − qqqi,i[vvv(i+1),i]−1bbb(i+1)

Step 3. ααα0 = [vvv1,0]−1bbb1 and αααi = [vvv(i+1),i]−1[bbb(i+1) −
∑i−1
j=0 vvv

(i+1),jαααj ], i = 1, 2, . . . ,m.
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Figure 3.1. Comparison of the numerical results: log(H(s)) and log(Ĥ(s)) are at left, log(L(s)) and log(L̂(s)) at right.
For upward CUSUM, h = 2.921, k = 1.285 are used, and for downward CUSUM h = 0.3150, k = 0.3491 are used.
The approximated values log(Ĥ(s)) and log(L̂(s)) are shown in thin solid lines for, n = 4, 5, 6, 7 and the analytic solutions
log(H(s)) and log(L(s)) are shown in thick dotted lines for n = 3, 5, 7, 9. For numerical approximation, q = 500 and intervals
of equal length, [aj−1, aj ]s were used.

3.3. Testing the algorithm and application

To check the accuracy and the consistency of the two approaches (analytic approach and numerical

approximation approach), we compared the log-transformed values of the approximated solutions

Ĥ(s) and L̂(s) and the analytic solutions H(s) and L(s). The cases of h = 2.921, k = 1.285, for

upward CUSUM, h = 0.3150, k = 0.3491, for downward CUSUM, are tested. In Figure 3.1, each

dotted line shows the values of log(H(s)) and log(L(s)) when the sample sizes n are 3, 5, 7, 9, and

each thin solid line shows the approximated values of log(Ĥ(s)) and log(L̂(s)) when the sample

sizes are 4, 5, 6, 7, 8. For the common sample sizes 5 and 7, the lines obtained by two approaches

are matched almost exactly. For the numerical approximation we used q = 500 and intervals of

equal length were used for [aj−1, aj ], j = 1, . . . , q.

The functions H(s) and L(s) are obtained by assuming the null hypothesis is true; that is, by

assuming the true process variance σ2 is equal to the in-control variance σ2
0 = 1. To see the effects

of true process variance σ2 = c, we use the notations Hc(s) and Lc(s) indexed by c. The curves

Hc(0) and Lc(0) are termed to ARL profiles. Let H(s;h, l, k) denote H(s) for given h, l and k. By

the property of invariance of scale transformation, Hc(s) is equal to H(s/c;h/c, l/c, k/c). The same
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Table 3.1. Comparison of the value of the ARLs: The ARLs of log-variance CUSUM(LV CUSUM) and variance CUSUM(V
CUSUM) are compared in two cases (I) and (II). ARLs of variance CUSUM computed by simulation method and analytic
algorithm are compared. Case (I) adopts k = 0.309, h = 1.210 for log-variance CUSUM and k = 1.285, h = 2.921 for
variance CUSUM. Case (II) adopts k = 0.451, h = 0.896 for log-variance CUSUM and k = 1.460, h = 2.331 for variance
CUSUM.

√
c

σ2
1 = (1.3)2 σ2

1 = (1.53)2

LV-CUSUM* V CUSUM* Exact LV CUSUM* V CUSUM* Exact

1.00 100.00 100.00±0.50 99.827 100.00 100.30±0.50 100.257

1.01 86.60 85.50±0.50 85.283 87.30 86.80±0.50 86.934

1.02 75.40 73.40±0.50 73.395 76.50 75.60±0.50 75.798

1.03 66.00 63.60±0.50 63.614 67.50 66.50±0.50 66.443

1.04 58.20 55.50±0.50 55.514 59.70 58.30±0.50 58.545

1.05 51.50 48.70±0.50 48.765 53.20 51.80±0.50 51.844

1.10 30.20 28.10±0.50 27.875 31.60 30.00±0.50 30.256

1.20 13.80 13.00±0.50 12.780 14.40 13.60±0.50 13.648

1.30 8.15 7.75±0.01 7.742 8.31 8.00±0.01 7.970

1.40 5.63 5.46±0.01 5.464 5.61 5.46±0.01 5.455

1.50 4.29 4.22±0.01 4.217 4.19 4.12±0.01 4.122

2.00 2.11 2.08±0.01 2.075 1.96 1.96±0.01 1.969

∗ marked values were shown in Chang and Gan (1995).

arguments are applied to Lc(s); that is Lc(s) = L(s/c;h/c, k/c).

Table 5 of Chang and Gan (1995) compared upward log-variance CUSUM and upward variance

CUSUM. For the comparison, the ARLs of log-variance CUSUM were approximately computed by

log-normal approximation, and the ARLs of variance CUSUM were evaluated by simulation. In

the study, n = 5 was considered. The design parameter k and h of variance CUSUM were selected

optimally by the conditions of in-control ARL and the out-of-control variance σ2
1 . They considered

the cases when the in-control ARL is 100 and the values of out-of-control variances are σ2
1 = (1.3)2,

σ2
1 = (1.4)2 and σ2

1 = (1.5)2. The design parameters of log-variance CUSUM were selected arbitrary

with numerical experience of trial and error. In Table 3.1, we compare our exact results and the

values Chang and Gan (1995) reported. For compact comparison, we tabulated only two cases,

(I): σ2
1 = (1.3)2 and (II): σ2

1 = (1.5)2, out of the three out-of-control variance used in Chang and

Gan (1995). The ARL values of variance CUSUM reported by Chang and Gan (1995) were very

accurate. In table 1, only the cells typed in boldface show a little difference between the simulation

results and the true values obtained by analytic approach.

4. Optimal Design of Variance CUSUM

The key criterion used for designing control chart is ARL. In-control ARL and out-of-control ARL

are the ARLs when the process is in-control(σ2 = σ2
0) state and out-of-control(σ2 = σ2

1) state,

respectively. ARL(0) and ARL(1) denote in-control ARL and out-of-control ARL, respectively.

Variance CUSUM has three design parameters n, h and k, and three design criterions, σ2
1/σ

2
0 ,

ARL(0) and ARL(1). Without loss of generality, we can use σ2
1 , instead of σ2

1/σ
2
0 , as a design

criterion, by assuming σ2
0 = 1.

From the relationship between SPRT and CUSUM, the optimal reference value k = (σ2
1 log σ2

1)/(σ2
1−

1) is determined from out-of-control variance σ2
1 . Refer Lucas (1976) and Moustakides (1986) for

more details. After fixing σ2
1 , two criterions ARL(0) and ARL(1), and two parameters n and h are

left to determine. For each n, we can find a h = h0 which attains the given ARL(0). Figure 4.1
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Figure 4.1. The pairs of (k, h) having the same ARL(0) for upward CUSUM (left) and downward CUSUM (right). On each plot,
n = 3 (dotted lines) and n = 5 (solid lines) are tested. Each line correspond to ARL(0) of 100, 150, 200, 250, 300, 400, 500 as
in the order shown in each plot.

Table 4.1. Design of upward CUSUM: For given triples of σ2
1 , ARL(0) and n, corresponding values of h0 and ARL(1) are listed.

c = σ2
1

ARL(0) 100 200 500

n h0 ARL(1) h0 ARL(1) h0 ARL(1)

2 8.8200 34.04 11.9301 46.63 16.6599 65.78

3 5.6208 21.17 7.3799 28.23 9.9515 38.63

σ2
1 = (1.2)2 4 4.2366 15.69 5.4766 20.59 7.2599 27.72

k = 1.1934 5 3.4290 12.60 4.3920 16.32 5.7556 21.71

7 2.5173 9.23 3.1851 11.68 4.1165 15.24

9 2.0034 7.43 2.5158 9.22 3.2240 11.83

2 6.6799 7.73 8.6799 9.71 11.4600 12.44

3 3.8888 5.01 4.9437 6.04 6.3856 7.46

σ2
1 = (1.6)2 4 2.7666 3.91 3.4866 4.60 4.4600 5.56

k = 1.5426 5 2.1329 3.31 2.6812 3.83 3.4181 4.55

7 1.4515 2.68 1.8253 3.02 2.3226 3.49

9 1.0836 2.35 1.3694 2.60 1.7468 2.94

2 5.4200 2.96 7.0400 3.53 9.2401 4.30

3 2.9322 2.12 3.7749 2.11 4.9072 2.80

σ2
1 = (2.2)2 4 1.9600 1.79 2.5400 1.98 3.3066 2.24

k = 1.9876 5 1.4201 1.64 1.8632 1.78 2.4486 1.96

7 0.8455 1.47 1.1550 1.56 1.5590 1.68

9 0.5353 1.38 0.7781 1.45 1.0927 1.54

shows the lines of pairs (k, h) which have the same ARL(0). On each picture solid lines are the cases

of n = 5, dotted lines are the cases of n = 3. All points passed by each line have the same ARL(0).

For each line, ARL(0) is given as 100, 150, 200, 250, 300, 400, 500 in the order from bottom to top.

ARL(1) is fully determined by the pair of (n, h0). It means, for each n, ARL(1) is determined by

ARL(0). When σ2
1 and ARL(0) are given, ARL(1) varies with n. The larger n, the smaller ARL(1)

is. The best policy to choose n is to take the one at which ARL(1) gets to be smaller than the

required value, at the consideration of practical use. Table 4.1 and 4.2 show the values of h0 and

ARL(1) corresponding to given triples of σ2
1 , ARL(0) and n for upward CUSUM and downward

CUSUM.
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Table 4.2. Design of downward CUSUM: For given triples of σ2
1 , ARL(0) and n, corresponding values of h0 and ARL(1) are

listed.

c = σ2
1

ARL(0) 100 200 500

n h0 ARL(1) h0 ARL(1) h0 ARL(1)

2 6.2200 38.59 8.1200 51.00 10.8801 69.10

3 3.8118 23.07 4.8456 29.79 6.3184 39.38

σ2
1 = (0.8)2 4 2.8267 16.68 3.5400 21.28 4.5533 27.75

k = 0.7934 5 2.2521 13.08 2.8042 16.58 3.5708 21.51

7 1.6235 9.19 2.0018 11.52 2.5210 14.78

9 1.2753 7.13 1.5638 8.83 1.9567 11.24

2 3.0599 14.70 3.7600 17.96 4.7600 22.63

3 1.7121 8.46 2.0826 10.19 2.5849 12.53

σ2
1 = (0.6)2 4 1.2067 6.10 1.4600 7.28 1.7934 8.83

k = 0.5747 5 0.9198 4.78 1.1091 5.66 1.3630 6.84

7 0.6231 3.43 0.7523 3.99 0.9194 4.78

9 0.4623 2.68 0.5604 3.19 0.6917 3.72

2 1.2601 7.25 1.5199 8.62 1.8600 10.41

3 0.6497 4.03 0.7857 4.74 0.9550 5.64

σ2
1 = (0.4)2 4 0.4466 2.92 0.5334 3.40 0.6401 3.98

k = 0.3491 5 0.3150 2.32 0.3817 2.63 0.4782 3.09

7 0.2162 1.64 0.2554 1.89 0.3003 2.22

9 0.1474 1.34 0.1878 1.50 0.2307 1.73

5. Final Comments

The properties of SPRT and CUSUM procedures for the scale parameter of gamma distribution

or of its sub-family have been studied by many authors. To reveal the characteristics of the test

and the procedures they used various methods. Sometimes approximation methods and sometimes

simulation methods were used. In this paper, we showed the solutions of the characteristic integral

equations of variance CUSUM are accurately evaluated by combining analytic method and numer-

ical approximation method. Numerical approximation method can be applied to both of odd and

even sample size cases, but the approximation method is very slow for computing and the accu-

racy of the results is unreliable. By applying approximation algorithm combinedly with analytic

solution, we considered the optimal design of CUSUM procedures. With the help of fast analytic

algorithm, speed of steps of approximation algorithm was also increased by efficiently taking testing

parameter values. To find an initial values of the parameters for even sample size, we used empirical

approximation method taking logarithmic average of the ARLs of CUSUM for two adjacent odd

sample sizes; that is, for an integer ν,

logHν+0.5(s) =

(
1

2

)
[logHν(s) + logHν+1(s)] .

Fast initial response(FIR) feature, suggested by Lucas and Crosier (1982), is frequently considered,

in spite of its restrictive advantage (cf. Lorden, 1971), in studies of CUSUM chart to improve

the nominal performance. Our algorithm is also applicable to compute ARL of CUSUM with FIR

feature, by using Hc(s) and Lc(s) instead of Hc(0) and Lc(0). Variance CUSUMs with FIR feature

were compared with other control schemes in Chang and Gan (1995).

While CUSUM chart has advantage that it detects small change of mean and/or variance in short

time, it has disadvantage that it takes longer time to detect large change than its non-sequential
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versions. To avoid the disadvantage, combined use of CUSUM chart and X-bar chart was suggested

by Lucas (1982). In the same way, combining variance CUSUM and S chart is expected to improve

the performance of variance CUSUM. Study on the combining variance CUSUM with X-bar chart

or ordinary CUSUM chart is also expected for further research.
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