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The concept of 0-morphism as a probability measure on the set of
effects
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Abstract

In this paper, we introduce the concepts of effects and observable as generalizations of event and random variable,
respectively. Also, we introduce the concept of 0-morphism and we investigate some results on O-morphism as a
probability measure on the set of effects.
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1. M 2 2 which is closed under countable union and

complementation. The basic structure is a measurable

The imprecision in probability theory comes from our space (2, F ) where (2 is a sample space consisting of
incomplete knowledge of the system but the random outcomes and ¥ is a g—field of egpents In 2 corre—
variables (measurements) still have precise values. But, sponding to some probabilistic experiment. If y is a

in fuzzy theory, we also have an imprecision in our
measurements, and so random variables must be re-
placed by fuzzy random variables and events by fuzzy
events. In this sense, S. Gudder introduced the concepts

probability measure on (2, & ) then 4 (4) is interpreted
as the probability that the event 4 occurs. A meas-—
urable function f:—R is called a random variable-

of effects (fuzzy events), observable(fuzzy random vari- The expectation of f is defined by E[f]= ﬁ”du«
ables) and their distribution. Also, he introduced the

concept of g-morphism on the set of effects. In this Denoting the Borel g-algebra on the real line 2 by &
paper, we have some results on g—morphism as a prob- (R), the distribution of f is the probability measure 4,
ability measure on the set of effects. on (R,&( R)) given by i (B)=pu(f1(B)). We inter-

For general fuzzy theoretical background, we refer to

pret g y (B) as the probability that f has a value in the
L. A. Zadeh [5]. ’

set B.

A random variable f: 2—0,1] is called an effect or
fuzzy event. Thus, an effect is just a measurable fuzzy
subset of 2. The set of effects is denoted by &= & (12,

Let 2 be a non-empty set. Let ¥ be a g—field of 7). It p %S a probability measure on ((?75} ) and f €
subsets of (2, that is, a non-empty class of subsets of &, we define the probability of f to be its expectation

Elf] = ﬁd“' If (f,) is an increasing sequence in &,

2. Preliminaries

YAt 20094 2¢ 10
22 X} - 20094 62 3 then by the monotone convergence theorem, Elim f,;]=
Corresponding Author @ yunys@jejunu.ac.kr
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lim E[f;] so F is countably additive. Stated in another
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way, if a sequence (f,) in & satisfies Y f, € &, then
EIX fil=3 Elfi]

Definition 2.1 Let & be a g—field of A. An observable
is a map X:68— (£, ) such that X(A) =1, and if
B €B(i=1,2,3-+) are mutually disjoint, then

=Y X(B

summation is pointwise.

where the convergence of the

Example 2.2 If f:(A,8)—(02,4) is a measurable
function, the corresponding sharp observable X T—E

(A,8) is given by X, (B) =1y

Definition 2.3 A state on (2, ) is a map s : & (12,
F)—[0.1] that satisfies s(1,) =1 and if (f,) is a se-

quence in & such that Y] f, € £(2.5),
then s (3] fi)= X3 s(f))-

Definition 24 X:6(2,d)—>&E(A,B8) is a o
-morphism if X (1 o) =1, and if (f;) 1S a sequence in

& such that M fie &), then

Example 2.5 Let 2=[0,1] and A=[1,2]. Let & and
be o—fields of (2 and A, respectively. Define X : & (0, &
)—>E(A.B) by X (f)(z)=f(z—1)

Then X is a g—morphism. In fact,
)?(19)(90) = lxy(x—l) = 1/1(95) and

X fia)= 3 fil@—1)

=X X(f)e)

Example 2.6 Let 2=4=10,1]. Let ¥ and & be ¢
~fields of 2 and A, respectively. Define X :& (0, &)—

E(A,B) by X(f)w) =5 (f @)+ f(1—2)).
Then X is a g—morphism. In fact,

X (1)) = 5 (o) + 1501~ 2)) = 1,(x)

and

(Zf; (@) +2f; (1—2))

l\DlH

X (Xf;)(x) =

372
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=2 X(f)@).

3. Basic properties

Theorem 3.1([1]) We have the followings.

LIf X:80.3)>&(A,B) is a g morphism, then
X (\f)=XX(f) forevery x € [0,1] and f € (2, ).

2. If s ;g((z,g)ﬁ[og] is a state, then there exists a
unique probability measure g on (2, ) such that

f)= ﬁdu for every fe £(02,F).

The next result shows that there exists a natural
one-to—one correspondence between observables and o
—morphisms.

Theorem 3.2 ([1D) If X:J— &£(A,8) is an observable,
then X has a unique extension to a g—morphism X : &
(R.F)>EAB). I YV:E(R.F)>E(AB) is a o
-morphism, then Y] 7 is an observable.

If f: AN is a measurable function, the correspond-
ing sharp observable X; :F—E(A,B) is given by
X (B) = I The next result shows that )?; (E(0,F
)— & (A, B) has a simple form.

Corollary 3.3 ([1D If f: A— is a measur- able func-
tion, then )?f (g)=g o f for every g € (02, ), where

)?f is an extension of X; in Example 2.2.

Theorem 3.4 If X:8(0,F)—>EAB) is a o
-morphism, then

L X(05) =0,

2. X [E f] EX

3.If f-ge 5(9,3), then X (f—g) =
X (f)— X (¢g). In particular,
X’(lg_g)zl/l_jl(g)'

4. If f<g, then X (f)<X (g)-

5 X(f+g—fg)=X(f)+X(9)— X (fg)-

Proof (1) Let fi=1p f

5[5 1) 7

5 )?(fi):)?(f])fif(

=0,(i>2). Since

i

)=1, and
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(0,) and thus X (0,) = 0,

(2) Let f, =0, (i=n+1), then Ef—Zf Thus

1=1

5((2 fJ:f([i f): f} X))

=X X0
(3) Since .
X(f)=X(f—-g+9)=X(f—g)+ X (¢g), we have
X(f=g)=X(f)—X(9)

(4) Since X (¢g) =
(5) It is trivial.

X(g=f)+X(f) X(9—f)=0

Theorem 3.5 If f:(4A,, B,)— (4, B,) and ¢:(4A,, B,
)— (A, B 5) are measurable functions, then
‘f(y o f T Xf ° )N(y'

Progf. Note that X, :&(A,B,)—E& (A, B,), X,:E (4,
B,)—>E(N,B,) and X, :E (A, B)—E (A, B,). Since
X,. (W) (w)=h o (g f)w) for every h e &(A,8,)
and » € A,

4. Main results

Theorem 4.1 Let f:A,—>A, be a measurable function
and pi: (A, B )—>[0.1]
(i=1,2). If py=(n,),, then yy o X, = p,.

be a probability measure

Proof Let g= Z ;1 be a simple function in & (A,,8
=1

1), then by Corollary 3.3,

o X;(g)= | X;(g) du,

ﬁ\

g ° fldu,
/Z C]B o f) du,
/E )Mo

And, by the definition of expectation and distribution,

Hence, p, = X, (g9) =y (9)-
Now for an arbitrary g € £(A,,8,), there exists an
increasing sequence of simple functions ¢ e &(A,,8,)

such that jim ¢, =¢. Then by Corollary 3.3,

n—0o0

o X;(g)= f)?f(g) dpu,

= / I1m d,uQ
n;»oo
= /( lim Gn ° f)d/lg
n—>co

By the monotone convergence theorem and the con-
tinuity of probability,

/( lim g, e f)duf lim / (9, o fldp,

n—>00 n—>00

= lim Ho © jEvf (gn)

n—>co

= lim Hy (gn )

n—co

:ul( lim gn)

:M(Q).

Therefore, p, « X, =y,

Theorem 4.2 let X:£(02,F)—>&E(A,B) be a o
-morphism. If (¢ ) is an increasing sequence in & (2, &)
with fim g, =g, then jim X (g,)= X (g9) in &(A,8).

n—co n—>00

Proof. Let f =g, and f =g —g , (n>2). Then

fneg(‘(z;g) for allnand In = E f

1=1

Since g= f,, we have

- RE0)
- i $X()
- 3% 4]
= lim X (9;,;
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Hence fim X (g,) = X (g)-

n—00

Corollary 4.3 Let X:6(2,F)—>E(AB) be a o
-morphism. If (g ) is a decreasing sequence in & (2, &

) with fim g, =g, then iim X(g,)= X (g) in E(A,B).

n—co n—>00

Theorem 4.4 Let X:£(02,F)—>&E(A,B) be a ¢
-morphism. If (g ) is sequence in &(, &) with
lim g, =g, then im X (g,) = X (¢) in &(A.8).

n—>00 n—>00

Proof. First, we prove that
)?( lim gn)S lim X (g,)

n—>co n—co

<lm X(g,)

n—0c0

<X ( lim g,,)
Let f,=inf,.,q. Since (f ) is an increasing se-
quence in & (£2,F), by Theorem 4.2, we have

X( lim gn): jZ(Supnzlinf i=n gz)

n—>co

= /\7(51113,,21 fn)~
— )?( lim fn)

n—0co

Let n € N. Then, for each n<i, f <g,, we have

X(fn)g*’x‘—(gz ) and hence ;X‘— (frz)glnf izn)? (gL )
Therefore
SuanlXV (fn)gsupnzlinf 7}271)}: (97 ) = lim )}:(gﬂ)

n—00

But’ Since lim )? (fn) = sup nzl)? (fn )’

n—co

X (h_m 9,,)3 lim X (g, )-

n—0o0

n—00

n—oo 1—>00

Similarly, “fim )?(g")é)?(lim g)

For ¢ e £(0,F), since

lim X (g,)<X (lim g")

= )?( lim g)

n—>00

X lim g,

n—co0

< lim X (g,)

n—co

we have

lim X (g,)= lm X(g,)

n—oo

n—co

= lim )?(gﬂ)

n—0co

374

Hence 1im X (g,) = X (g)-

n—>00
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