Interval-Valued Fuzzy Relations

Kur Hur, Jeong Gon Lee and Jeong Yeol Choi

Division of Mathematics and Informational Statistics, Nanoscale Sciences and Technology Institute, Wonkwang University, Iksan, Jeonbuk, Korea 570-749

Abstract

By using the notion of interval-valued fuzzy relations, we forms the poset (IVFR $(X), \leq$) of interval-valued fuzzy relations on a given set X. In particular, we forms the subposet (IVFE $(X), \leq$) of interval-valued fuzzy equivalence relations on a given set X and prove that the poset (IVFE $(X), \leq$) is a complete lattice with the least element and greatest element.

Key words : interval-valued fuzzy set [relation, equivalence relation], (complete) lattice

1. Introduction

After the introduction of the concept of fuzzy sets by Zadeh [11], several researchers were concerned about the generalizations of the notion of fuzzy sets, e.g., fuzzy set of type n [12], intuitionistic fuzzy sets [1] and interval-valued fuzzy sets [3]. The concept of interval-valued fuzzy sets was introduced by Gorzaxczany [3], and recently there has been progress in the study of such sets by several researchers (see [2], [4], [5], [6], [7], [8], [10]). In [5], the topology of interval-valued fuzzy sets(IVF) is defined, and some of its properties are discussed, and then Mondal et [6] studied the connectedness in the topology al. of interval-valued fuzzy sets. Using the concept of interval-valued fuzzy sets, Jun et al. [4] introduced the notions of IVF strongly semiopen (semiclosed) sets, IVF (strong) semi-interior (IVF (strong) semiclosure), IVF strongly semiopen (semiclosed) mapping, and IVF strongly semi-continuous mapping, and then they investigated several properties. In 1992, Roy et al. [9] introduced the concept of interval-valued fuzzy relation and obtained it's fundamental results.

In this paper, by using the notion of interval-valued fuzzy relations, we forms the poset (IVFR $(X), \leq$) of interval-valued fuzzy relations on a given set X. In particular, we forms the subposet (IVFE $(X), \leq$) of interval-valued fuzzy equivalence relations on a given set X and prove that the poset (IVFE $(X), \leq$) is a complete lattice with the least element and greatest element.

접수일자 : 2009년 1월 22일

2. Preliminaries

First we shall present the fundamental definitions given by [3-5, 7, 8]:

Let D(I) be the set of all closed subintervals of the unit interval I. The elements of D(I) are generally denoted by capital letters M, N, \dots , and note that $M = [M^L, M^U]$, where M^L and M^U are the lower and upper points respectively. Especially, we denote $\mathbf{0} = [0, 0], \mathbf{1} = [1, 1]$, and $\mathbf{a} = [a, a]$ for every $a \in (0, 1)$. We also note that

$$\begin{split} &(i)(\forall M,N\in D(I))\;(M=N\Leftrightarrow M^L=N^L,M^U=N^U).\\ &(ii)(\forall M,N\in D(I))(M\leq N\Leftrightarrow M^L\geq N^L,M^U\leq N^U).\\ &\text{For every }M\in D(I), \text{ the complement of }M, \text{ denoted}\\ &\text{by }M^C, \text{ is defined by }M^c=1-M=[1-M^U,1-M^L]. \end{split}$$

Definition 2.1 [3].Let X be a given nonempty set. A mapping $A = [A^L, A^U] : X \to D(I)$ is called an *interval valued fuzzy set* (briefly, *IVFS*) in X, where A^L and A^U are fuzzy sets in X satisfying $A^L(x) \le A^U(x)$ and $A(x) = [A^L(x), A^U(x)]$ for each $x \in X$.

It is clear that every fuzzy set A in X is an IVFS of the form A = [A, A]. For any $[a, b] \in D(I)$, the IVFS whose value is the interval [a, b] for all $x \in X$ is denoted by [a, b]. In particular, for any $a \in [0, 1]$, the IVFS whose value is a = [a, a] for all $x \in X$ is denoted by simply \tilde{a} . For a point $p \in X$ and for $[a, b] \in D(I)$ with b > 0, the IVFS which takes the value [a, b] at pand **0** elsewhere in X is called an *interval-valued fuzzy point* (briefly, an *IVF point*) and is denoted by $[a, b]_p$. In particular, if b = a, then it is also denoted by a_p . We will denote by $D(I)^X$ or IVF(X) and IVFp(X) the

완료일자 : 2009년 5월 19일 2000 Mathematics Subject Classification of AMS: 03E72,

⁰³E72, 04A72. This paper was supported by Wonkwang University in 2007.

set of all IVFSs and the set of all IVF points in X respectively.

Notation. Let $X = \{x_1, x_2, \dots, x_n\}$. Then $A = ([a_1, b_1], [a_2, b_2], \dots, [a_n, b_n])$ denotes an IVFS in X such that $A^L(x_i) = a_i$ and $A^U(x_i) = b_i$, for all $i = 1, 2, \dots, n$.

Definition 2.2 [3,5]. Let X be a nonempty set and let $A, B \in D(I)^X$. Then :

- (a) $A \subset B$ iff $A^L(x) \leq B^L(x)$ and $A^U(x) \leq B^U(x)$ for all $x \in X$.
- (b) A = B iff $A \subset B$ and $B \subset A$.
- (c) The complement A^c of A is defined by $A^c(x) = [1 A^U(x), 1 A^L(x)]$ for all $x \in X$.
- (d) If $\{A_i : i \in J\}$ is an arbitrary subset of $D(I)^X$, then

$$\bigcap A_i(x) = [\bigwedge_{i \in J} A_i^L(x), \bigwedge_{i \in J} A_i^U(x)],$$
$$\bigcup A_i(x) = [\bigvee_{i \in J} A_i^L(x), \bigvee_{i \in J} A_i^U(x)].$$

Definition 2.3 [5]. Let X be a nonempty set and let $A \in D(I)^X$. Then the set $\{x \in X | A^U(x) > 0\}$ is called the *support* of A and denoted by *supp*(A).

Definition 2.4 [5]. Let X be a nonempty set and let $A \in D(I)^X$. Then an IVF point M_x is said to belong to A, denoted by $M_x \in A$, if $A^L(x) \ge M^L$ and $A^U(x) \ge M^U$.

It is clear that $A = \bigcup \{M_x : M_x \in A\}.$

Result 2.A [5, Theorem 1].Let X be a nonempty set and let $A, B, C, A_i, B_i \in D(I)^X$. Then the following hold :

$$\begin{aligned} \text{(a)} & \tilde{0} \subset A \subset \tilde{1}. \\ \text{(b)} & A \cup B = B \cup A, A \cap B = B \cap A. \\ \text{(c)} & A \cup (B \cup C) = (A \cup B) \cup C, A \cap (B \cap C) = \\ & (A \cap B) \cap C. \\ \text{(d)} & A, B \subset A \cup B, A \cap B \subset A, B. \\ \text{(e)} & A \cap (\bigcup_i B_i) = \bigcup_i (A \cap B_i). \\ \text{(f)} & A \cup (\bigcap_i B_i) = \bigcap_i (A \cup B_i). \\ \text{(g)} & (\tilde{0})^c = \tilde{1}, (\tilde{1})^c = \tilde{0}. \\ \text{(h)} & (A^c)^c = A. \\ \text{(i)} & (\bigcup_i A_i)^c = \bigcap_i A_i^c, (\bigcap_i A_i)^c = \bigcup_i A_i^c. \end{aligned}$$

3. Interval-valued fuzzy relations

Definition 3.1 [9].Let X and Y be nonempty sets. Then each $R = [R^L, R^U] \in D(I)^{X \times Y}$ is called an interval-valued fuzzy relation (briefly, IVFR) from X to Y. For each $(x, y) \in X \times Y$, R(x, y) estimates the interval of the strength of the link between x and y. $R^L(x, y)$ and $R^U(x, y)$ are called the maximum strength and minimum strength of the link between x and y respectively. In particular, each member of $D(I)^{X \times X}$ is called an interval-valued fuzzy relation in X.

Definition 3.2 [9].Let $R \in D(I)^{X \times Y}$. Then the inverse R^{-1} of R is an IVFR from Y to X such that $R^{-1}(y,x) = R(x,y)$ for each $(y,x) \in Y \times X$. It is clear that $R^{-1L}(y,x) = R^L(x,y)$ and $R^{-1U}(y,x) = R^U(x,y)$.

Definition 3.3. Let $R \in D(I)^{X \times Y}$ and $S \in D(I)^{Y \times Z}$. Then the *composition* $R \circ S$ of S and R is an IVFR from X to Z defined as follows : for each $(x, z) \in X \times Z$,

$$\begin{split} &R \circ S(x,z) \\ &= [\bigvee_{y \in Y} (R^L(x,y) \wedge S^L(y,z), \\ &\bigvee_{y \in Y} (R^U(x,y) \wedge S^U(y,z)]. \end{split}$$

The following is the immediate result of Definition 3.2 and 3.3.

The following is the immediate result of proposition 3.4 (a).

Corollary 3.4. Let $R, S \in D(I)^{X \times X}$. If $R \circ S = S \circ R$, then

$$(R \circ S) \circ (R \circ S) = (S \circ S) \circ (R \circ R)$$

Definition 3.5 [9]. An IVFR R in X is called

an interval-valued fuzzy equivalence relation (briefly, IVFER) in X if it satisfies the following conditions :

- (a) it is interval-valued fuzzy reflexive,
 - i.e., R(x, x) = [1, 1] for each $x \in X$,
- (b) it is interval-valued fuzzy symmetric , i.e., $R^{-1} = R$,
- (c) it is interval-valued fuzzy transitive , i.e., $R \circ R \subset R$.

We will denote the set of all IVFERs in X as IVFE(X). The following is the immediate result of Definition 3.5. and proposition 3.4.

Proposition 3.6. Let $R, S \in IVFE(X)$.

- (a) If R is interval-valued fuzzy reflexive [resp., symmetric, transitive], then so is R^{-1} .
- (b) If R is interval-valued fuzzy reflexive [resp., symmetric, transitive], then so is $R \circ R$.
- (c) If R is interval-valued fuzzy reflexive, then $R \subset R \circ R$.
- (d) If R is interval-valued fuzzy symmetric, then so are $R \cup R^{-1}$, $R \cap R^{-1}$ and $R \circ R^{-1} = R^{-1} \cap R$.
- (e) If R and S are interval-valued fuzzy reflexive [resp., symmetric, transitive], then so is $R \cap S$.
- (f) If R and S are interval-valued fuzzy symmetric, then so is $R \cup S$.

From (a), (b) and (e) of Proposition 3.6, the proofs of the following result are obvious.

Corollary 3.6-1. If $R, S \in IVFE(X)$, then $R^{-1}, R \circ R, R \cap S \in IVFE(X)$.

The following is the immediate result of Definition 2.3 and Proposition 3.6(c).

Corollary 3.6-2. If $R \in IVFE(X)$, then $R \circ R = R$.

Theorem 3.7. Let $\{R_{\alpha}\}_{\alpha\in\Gamma}$ be a nonempty family of *IVFERs in X*. Then $\bigcap_{\alpha\in\Gamma} R_{\alpha} \in IVFE(X)$. However, in general, $\bigcup_{\alpha\in\Gamma} R_{\alpha}$ need not be an *IVFER in X*. **Proof.** Let $x \in X$ and let $R = \bigcap_{\alpha\in\Gamma} R_{\alpha}$. Then, since each R_{α} is interval-valued fuzzy reflexive,

$$R^L(x,x) = \bigwedge_{\alpha \in \Gamma} R^L_\alpha(x,x) = 1$$

and

$$R^{U}(x,x) = \bigwedge_{\alpha \in \Gamma} R^{U}_{\alpha}(x,x) = 1.$$

Thus R(x,x) = [1,1]. So R is interval-valued fuzzy reflexive. It is clear that R is interval-valued fuzzy

symmetric. Now let $(x, z) \in X \times X$. Then

$$[R \circ R]^{L}(x, z)$$

$$= \bigvee_{y \in Y} [R^{L}(x, y) \wedge R^{L}(y, z)]$$

$$= \bigvee_{y \in Y} [(\bigwedge_{\alpha \in \Gamma} R^{L}_{\alpha}(x, y)) \wedge (\bigwedge_{\alpha \in \Gamma} R^{L}_{\alpha}(y, z))]$$

$$\leq \bigwedge_{\alpha \in \Gamma} (\bigvee_{y \in Y} [R^{L}_{\alpha}(x, y) \wedge R^{L}_{\alpha}(y, z)])$$

$$= \bigwedge_{\alpha \in \Gamma} (R_{\alpha} \circ R_{\alpha})^{L}(x, z)$$

$$\leq \bigwedge_{\alpha \in \Gamma} R^{L}_{\alpha}(x, z) [\text{Since} \quad R_{\alpha} \circ R_{\alpha} \subset R_{\alpha}]$$

$$= R^{L}(x, z).$$

Similarly, we can see that $(R \circ R)^U(x, z) \leq R^U(x, z)$. Thus R is interval-valued transitive. Hence $R = \bigcap_{\alpha \in \Gamma} R_\alpha \in \text{IVFE}(X)$.

Example 3.7. Let $X = \{a, b, c\}$ and let R and S be the IVFRs in X represented by the following matrices, respectively :

R	a	b	c	
a	[1, 1]	[0.3, 0.8]	[0.4, 0.9]	
b	[0.3, 0.8]	[1, 1]	[0.3, 0.8]	
c	[0.4, 0.9]	[0.3, 0.8]	[1, 1]	
S	a	b	c	
$\frac{S}{a}$	$\frac{a}{[1, 1]}$	b[0.4, 0.9]	$\frac{c}{[0.5, 0.7]}$	
			-	

Then clearly $R, S \in IVFE(X)$ and $R \cup S$ is the IVFR in X represented by the following matrix :

$R\cup S$	a	b	c	
a	[1, 1]	[0.4, 0.9]	[0.5, 0.9]	
b	$[1, 1] \\ [0.4, 0.9]$	[1, 1]	[0.4, 0.8]	
c	[0.5, 0.9]	[0.4, 0.8]	[1, 1]	

On the other hand,

$$[(R \cup S) \circ (R \cup S)]^U(b,c) = 0.9 > 0.8 = (R \cup S)^U(b,c).$$

Thus $(R \cup S) \circ (R \cup S) \notin R \cup S$. So $R \cup S$ is not intervalvalued fuzzy transitive. Hence $R \cup S \notin IVFE(X)$. \Box

Proposition 3.8. Let R and S be interval-valued fuzzy reflexive relations in a set X. Then $R \circ S$ is interval-valued fuzzy reflexive.

Proof. Let $x \in X$. Then

$$(R \circ S)^{L}(x, x)$$

$$= \bigvee_{y \in X} [S^{L}(x, y) \wedge R^{L}(y, x)]$$

$$\geq S^{L}(x, x) \wedge R^{L}(x, x) [By the hypotheses]$$

$$= 1.$$

Similarly, we can see that $(R \circ S)^U(x, x) \ge 1$. Thus $(R \circ S)(x, x) = [1, 1]$, for each $x \in X$. Hence this completes the proof.

Proposition 3.9. Let $R, S \in IVFE(X)$. If $R \circ S = S \circ R$, then $R \circ S \in IVFE(X)$.

Proof. By Proposition 3.8, it is clear that $R \circ S$ is interval-valued fuzzy reflexive. Let $x, y \in X$. Then

$$(R \circ S)^{L}(x, y)$$

= $\bigvee_{z \in X} [S^{L}(x, z) \land R^{L}(z, y)]$
= $\bigvee_{z \in X} [R^{L}(y, z) \land S^{L}(z, x)]$

[Since *R* and *S* are interval-valued fuzzy symmetric]

 $= (S \circ R)^{L}(y, x) = (R \circ S)^{L}(y, x).$ [Since $R \circ S = S \circ R$]

Similarly, we can see that $(R \circ S)^U(x, y) = (R \circ S)^U(y, x)$. Thus $R \circ S$ is interval-valued fuzzy symmetric. On the other hand,

$$(R \circ S) \circ (R \circ S)$$

= $(R \circ R) \circ (S \circ S)$ [By Corollary 3.4]
 $\subset R \circ S$.[By the hypothesis and Proposition 3.4(b)]

So $R \circ S$ is interval-valued fuzzy transitive. Hence $R \circ S \in \text{IVFE}(X)$.

Let $R \in IVFE(X)$ and let $a \in X$. We define a mapping $R_a : X \to D(I)$ as follows: for each $x \in X$,

$$R_a(x) = R(a, x).$$

Then clearly R_a is an IVFS in X. In this case, R_a is called an *interval-valued fuzzy equivalence class of* R containing a. The set $\{R_a : a \in X\}$ is called the *interval-valued fuzzy quotient set of* X by R and denoted by X/R.

Theorem 3.10. Let $R \in IVFE(X)$. Then :

(a) $R_a = R_b$ if and only if R(a, b) = [1, 1] for any $a, b \in X$.

- (b) R(a,b) = [0,0] if and only if $R_a \cap R_b = \mathbf{0}$ for any $a, b \in X$.
- $(c) \bigcup_{a \in X} R_a = \mathbf{1}.$
- (d) There exists the surjection $\pi : X \to X/R$ (called the natural mapping) defined by $\pi(x) =$

 R_x for each $x \in X$. **Proof.**(a)(\Rightarrow): Suppose $R_a = R_b$. Since R is intervalvalued fuzzy reflexive, $R(a,b) = R_a(b) = R_b(b) =$ R(b,b) = [1,1]. So R(a,b) = [1,1]. (\Leftarrow): Suppose R(a,b) = [1,1]. Then $R^U(a,b) = 1$ and $R^L(a,b) = 1$. Let $x \in X$. Then

$$\begin{split} R^U_a(x) &= R^U(a,x) \\ &\geq \bigvee_{z \in X} [R^U(a,z) \wedge R^U(z,x) \end{split}$$

[Since R is interval-valued fuzzy transitive]

$$\geq R^U(a,b) \wedge R^U(b,x) = 1 \wedge R^U(b,x)$$
$$= R^U(b,x) = R_b^U(x).$$

Similarly, $R_a^L(x) \ge R_b^L(x)$. Thus $R_b \subset R_a$. By the similar arguments, $R_a \subset R_b$. Hence $R_a = R_b$. The proofs of (b), (c) and (d) are easy. This completes the proof.

4. The interval-valued fuzzy equivalence relation generated by an IVFR

Definition 4.1. Let $R \in \text{IVFR}(X)$ and let $\{R_{\alpha}\}_{\alpha \in \Gamma}$ be the family of all the IVFERs in X containing R. Then $\bigcap_{\alpha \in \Gamma} R_{\alpha}$ is called the IVFER generated by R and denoted by R^{e} .

It is clear that R^e is the smallest IVFER containing R.

Definition 4.2. Let R be an IVFR in X. Then the interval-valued fuzzy transitive closure of R, denoted by \hat{R} , is defined as follows:

$$\hat{R} = \bigcup_{n \in \mathbb{N}} R^n$$
, where $R^n = R \circ R \circ \cdots \circ R$,

in which R occurs n times.

The following is the immediate result of Definition 3.2.

Proposition 4.3. Let R be an IVFR in X. Then :

- (a) \hat{R} is an interval-valued fuzzy transitive relation in X.
- (b) If there exists $n \in \mathbb{N}$ such that $R^{n+1} = R^n$, then $\hat{R} = R \cup R^2 \cup \cdots \cup R^n$.

	F	2	a	b	c			
	a	,	[0.2, 0.6]	[0, 0.1]	[0.3, 0.7]	-		
	b			[0.1, 0.5]	[0, 0]			
	С	;	[0.4, 0.8]	[0, 0]	[0.5, 0.8]			
The	en _	- 						
	R^2	2	a	b	c	_		
	a		[0.3, 0.7]	[0, 0.1]	[0.3, 0.7]			
	b		[0, 0]	[0.1, 0.5]	[0.1, 0.3]			
	c		[0.4, 0.8]	[0.4, 0.8]	[0.5, 0.8]			
	R^{2}	3	a	b	c			
	\overline{a}		[0.3, 0.7]	[0, 0.1]	[0.3, 0.7]	-		
	b		[0.1, 0.3]	[0.1, 0.5]	[0.1, 0.3]			
	c		[0.4, 0.8]	[0.4, 0.8]	[0.5, 0.8]			
Thus $R^2 = R^3$. So $\hat{R} = R \cup R^2$. Moreover								
$\hat{R} \circ \hat{R}$								
	\hat{R}		a	b	c			
	a		[0.3, 0.7]	[0, 0.1]	[0.3, 0.7]			
	b		[0.1, 0.3]	[0.1, 0.5]	[0.1, 0.3]			
	c		[0.4, 0.8]	[0.4, 0.8]	[0.5, 0.8]			
	$\hat{R}\circ\hat{R}$	Ì	a	b	c			
_	a		[0.3, 0.7]	[0, 0.1]	[0.3, 0.7]			
	b		[0.1, 0.3]	[0.1, 0.5]	[0.1, 0.3]			
	c		[0.4, 0.8]	[0.4, 0.8]	[0.5, 0.8]			
тт	Ô		D D	o · · ·	1 1 1	c		

Hence $\hat{R} = R \cup R^2$ is interval-valued fuzzy transitive.

The following is the immediate result of (b) and (f) in Proposition 2.6.

Proposition 4.4. If R is interval-valued fuzzy symmetric, then so is \hat{R} .

Proposition 4.5. Let R and S be IVFRs in X. Then

- (a) If $R \subset S$, then $\hat{R} \subset \hat{S}$.
- (b) If $R \circ S = S \circ R$ and $R, S \in \text{IVFE}(X)$, then $\widehat{(R \circ S)} = R \circ S.$

Proof. (a) It is clear from proposition 3.4 (b). (b) Suppose $R \circ S = S \circ R$ and $R, S \in \text{IVFE}(X)$. Then it is clear that $(R \circ S)^1 = R \circ S$. Now suppose $(R \circ S)^k = R \circ S$ for any $k \ge 2$. Then

$$(R \circ S)^{k+1} = (R \circ S)^k \circ (R \circ s) = (R \circ S) \circ (R \circ S)$$
$$= (R \circ R) \circ (S \circ S) = R \circ S.$$

So $(R \circ S)^n = R \circ S$ for any $n \ge 1$. Hence $\widehat{R \circ S} = R \circ S$

Definition 4.6 We define two mappings $\triangle, \bigtriangledown : X \rightarrow D(I)$ as follows : for any $x, y \in X$,

$$\triangle(x,y) = \begin{cases} [1,1] & \text{if } x = y, \\ [0,0] & \text{if } x \neq y \end{cases}$$

and

$$\bigtriangledown(x,y) = [1,1].$$

It is clear that $\triangle, \bigtriangledown \in \text{IVFE}(X)$ and R is an interval-valued fuzzy reflexive relation in X if and only if $\triangle \subset R$.

Theorem 4.7. If R is an IVFR in X, then $R^e = R \cup \widehat{R^{-1}} \cup 1$.

Proof. Let $S = R \cup \widehat{R^{-1}} \cup \triangle$. Then clearly $R \subset S$. By Proposition 4.3 (a), S is interval-valued fuzzy transitive. Let $x \in X$. Since $\triangle \subset S$,

$$S^L(x,x) \ge \triangle^L(x,x) = 1$$

and

$$S^U(x,x) \ge \triangle^U(x,x) = 1.$$

Then S(x,x) = [1.1]. So S is interval-valued fuzzy reflexive. It is clear that $R \cup R^{-1} \cup \Delta$ is intervalvalued fuzzy symmetric. Thus, by Proposition 4.4, Sis interval-valued fuzzy symmetric. So $S \in \text{IVFE}(X)$. Now let $K \in \text{IVFE}(X)$ such that $R \subset K$. Then $\Delta \subset K$ and $R^{-1} \subset K^{-1} = K$ by Proposition 3.4(d). Thus $R \cup R^{-1} \cup \Delta \subset K$. By Proposition 3.4 (b), $[R \cup R^{-1} \cup \Delta]^n \subset K^n = K$ for any $n \ge 1$. So $S \subset K$. Hence $R^e = S$. This completes the proof. \Box

Proposition 4.8. Let $R, S \in IVFE(X)$. We define $R \lor S$ as follows :

$$R \lor S = \widehat{R} \cup \widehat{S}$$

Then $R \vee S \in \text{IVFE}(X)$. **Proof.** By Proposition 4.3 (a), $R \vee S$ is interval-valued fuzzy transitive. Since R and S are interval-valued fuzzy symmetric, $R \cup S$ is interval-valued fuzzy symmetric by Proposition 3.6 (f). Thus, by Proposition $4.4, R \vee S = \widehat{R \cup S}$ is interval-valued fuzzy symmetric. Let $x \in X$. Then

$$(R \lor S)(x,x) = [\bigvee_{n \in \mathbb{N}} [R^L(x,x) \lor S^L(x,x)]^n, \bigvee_{n \in \mathbb{N}} [R^U(x,x) \lor S^U(x,x)]^n]$$
$$= [\bigvee_{n \in \mathbb{N}} (1 \lor 1)^n, \bigvee_{n \in \mathbb{N}} (1 \lor 1)^n]$$

[Since R and S are interval-valued fuzzy reflexive] = [1, 1].

So $R \lor S$ is interval-valued fuzzy reflexive. Hence $R \lor S \in \text{IVFE}(X)$.

The following result gives another description for $R \lor S$ of two IVFERs R and S.

Proposition 4.9. Let $R, S \in \text{IVFE}(X)$. If $R \circ S \in \text{IVFE}(X)$, then $R \circ S = R \lor S$, where $R \lor S$ denotes the least upper bound for $\{R, S\}$ with respect to the inclusion.

Proof. Let $x, y \in X$. Then

$$(R \circ S)^{L}(x, y) =$$

$$\geq S^{L}(x, y) \wedge R^{L}(y, y)$$

$$= S^{L}(x, y) \wedge 1$$

[Since *R* is interval-valued fuzzy reflexive]

$$= S^{L}(x, y).$$

Similarly, we can see that $(R \circ S)^U(x,y) \geq S^U(x,y)$. Thus $S \subset R \circ S$. Also, by the similar method, $R \subset R \circ S$. So $R \circ S$ is an upper bound for $\{R, S\}$ with respect to " \subset ".

Now let $P \in \text{IVFE}(X)$ such that $R \subset P$ and $S \subset P$. Let $x, y \in X$. Then

$$(R \circ S)^{L}(x, y)$$

$$= \bigvee_{z \in X} [S^{L}(x, z) \wedge R^{L}(z, y)]$$

$$\leq \bigvee_{z \in X} [P^{L}(x, z) \wedge P^{L}(z, y)]$$

$$= (P \circ P)^{L}(x, y)$$

$$\leq P^{L}(x, y).$$

[Since P is interval-valued fuzzy transitive]

Similarly, we can see that $(R \circ S)^U(x,y) \leq P^U(x,y)$. Thus $R \circ S \subset P$. So $R \circ S$ is the least upper bound for $\{R,S\}$ with respect to " \subset ". Hence $R \circ S = R \lor S$.

Proposition 4.10. If $R, S \in IVFE(X)$ such that $R \circ S = S \circ R$, then $R \lor S = \widehat{R \circ S}$.

Proof. Suppose $R, S \in IVFE(X)$. Then, by Theorem 4.7,

$$(R \cup S)^e = (R \cup S) \cup (R \cup S)^{-1} \cup \triangle$$

Since $R, S \in \text{IVFE}(X), (R \cup S) \cup (R \cup S)^{-1} \cup \triangle = R \cup S$. By Result 2. A(d), it is clear that $R \subset R \cup S$ and $S \subset R \cup S$. Thus

 $R \circ S \subset (R \cup S) \circ (R \cup S)[$ By Proposition 3.4 (b)] = $R \cup S.$

[By Proposition 3.4 (c) and the hypothesis]

By Proposition 4.5 (a), $\widehat{R \circ S} \subset \widehat{R \cup S}$. On the other hand, since $R, S \in \text{IVFE}(X)$, by Proposition 4.9, $R \subset R \circ S$ and $S \subset R \circ S$. Then $R \cup S \subset R \circ S$. Thus, by Proposition 3.5 (a), $\widehat{R \cup S} \subset \widehat{R \circ S}$. So $\widehat{R \circ S} = \widehat{R \cup S}$. Hence $R \lor S = (R \cup S)^e = \widehat{R \cup S} = \widehat{R \circ S}$.

 $\bigvee_{z \in X} \begin{bmatrix} S^L(x, z) \land R^L(z, y) \end{bmatrix}$ The following is the immediate result of Proposition 4.10 and Proposition 4.5 (b).

Corollary 4.10. If $R, S \in \text{IVFE}(X)$ such that $R \circ S = S \circ R$, then $R \lor S = R \circ S$.

For a set X, it is clear that IVFE(X) is a poset with respect to the inclusion " \subset ". Moreover, for any $R, S \in IVFE(X), R \cap S$ is the greatest lower bound for R and S in (IVFE $(X), \subset$).

Now, we define two binary operators \vee and \wedge an IVFE(X) as follows : for any $R, S \in$ IVFE (X),

$$R \wedge S = R \cap S$$
 and $R \vee S = (R \cup S)^e$.

Then we obtain the following result from Proposition 3.7, Definition 4.6, Proposition 4.8 and Theorem 4.10.

Theorem 4.11. (*IVFE* (X), \lor , \land) is a complete lattice with the least element \bigtriangleup and the greatest element \bigtriangledown .

References

1. K. Atanassov, "Intuitionistic fuzzy Sets", *Fuzzy Sets and Systems*, 20, 87-96, 1986.

2. R. Biawas, "Rosenfeld's fuzzy subgroups with interval-valued membership functions", *Fuzzy Sets* and Systems, 63, 87-90, 1994.

3. M.B Gorzalzany, "A method of inference in approximate reasoning based on interval-valued fuzzy sets", *Fuzzy Sets and Systems*, 21, 1-17, 1987.

4. Y. B. Jun, J. J. Bae, S. H. Cho and C. S. Kim, "Interval-valued fuzzy strong semi-openness and interval-valued fuzzy strong semi-continuity", *Honam Math. J.*, 28, no. 3, 417-431, 2006.

5. T. K. Mondal and S. K. Samanta, "Topology of interval fuzzy sets", *Indian J. Pure Appl. Math.*, 30, no. 1, 23-38, 1999.

6. T. K. Mondal and S. K. Samanta, "Connectedness in topology of interval-valued fuzzy sets", *Italian J. Pure Appl. Math.*, 18, 33-50, 2005.

7. J. H. Park, J. S. Park and Y. C. Kwun, "On fuzzy inclusion in the interval-valued sense", *FSKG 2005*, *LANI 3613*, *Springer-Verlag*, 1-10, 2005.

8. P. V. Ramakrishnan and V. Lakshmana Gomathi Nayagam, "Hausdorff interval-valued fuzzy filters", *J. Korean Math. Soc.*, 39, no. 1, 137-148, 2002.

9. M. K. Roy and R. Biswas, "I-v fuzzy relations and Sanchez's approach for medical diagnosis", *Fuzzy Sets* and Systems, 47, 35-38, 1992.

10. W. Zeng and Y. Shi, "Note on interval-valued fuzzy set", *FSKG 2005, LANI 3613, Springer-Verlag*, 20-25, 2005.

11. L. A. Zadeh, "Fuzzy sets", Inform. Control, 8, 338-353, 1965.

12. L. A. Zadeh, "The concept of a linguistic variable and its application to approximate reasoning I", *Inform, Sci.*, 8, 199-249, 1975.

Kul Hur

He received the Ph.D degree in Department of Mathematics from Yonsei University in 1988.

From 1981 to present, he is a professor in the Division of Mathematics and informational Statistics, Wonkwang University.

His research interest are fuzzy topology, fuzzy algebra, and category theory.

E-mail: kulhur@wonkwang.ac.kr

Jeong Gon Lee

He received the Ph.D degree in Department of Mathematics from Wonkwang University in 1998.

From 1995 to present, he is a lecturer in the Division of Mathematics and informational Statistics, Wonkwang University.

His research interest are functional analysis, fuzzy analysis, and operator theory.

E-mail : jukolee@wonkwang.ac.kr

Jeong Yeol Choi

He received the Ph.D degree in Department of Mathematics from Chonbuk University in 1984.

From 1979 to present, he is a professor in the Division of Mathematics and informational Statistics, Wonkwang University.

His research interest are functional analysis and fuzzy analysis.

E-mail : jychoi@wonkwang.ac.kr