DOI QR코드

DOI QR Code

The Analysis of Mesoscale Circulations Characteristics Caused by the Evaporation-Efficiency of Water Retention Pavement

보수성 도로 포장재의 증발효율 변화에 의한 중규모 순환장 특성 분석

  • Kim, In-Su (Expressway and Transportation Research Institute, Korea Expressway Corporation) ;
  • Lee, Soon-Hwan (Institute for Environmental Studies, Pusan National University) ;
  • Kim, Hae-Dong (Department of Environment Disaster System, Keimyung University) ;
  • Suh, Young-Chan (Department of Transportation Engineering, Hanyang University)
  • 김인수 (한국도로공사 도로교통연구원) ;
  • 이순환 (부산대학교 환경문제연구소) ;
  • 김해동 (계명대학교 환경방재시스템학과) ;
  • 서영찬 (한양대학교 교통공학과)
  • Received : 2009.07.07
  • Accepted : 2009.09.15
  • Published : 2009.10.30

Abstract

Field observation and numerical experiments were conducted to understand the impact of water retention pavement on the surface heat budget and on the regional circulation. The numerical model applied in this study is the atmospheric dynamic model Local Circulation Model (LCM) with two dimensional grid system, and a field observation was carried out under the clear sky and calm conditions of the weather on 19 July 2007. In the field observation, the maximum value of surface temperature on pavement covered with water retention material reached the $41.2^{\circ}C$ at 1430 LST and the values was lower for $16.1^{\circ}C$ than that of asphalt without the material. The Case BET03 assumed to be 0.3 for the surface evaporation efficiency was in good agreement with the observation and its sensible and latent heat fluxes were numerically estimated to be 229 and 227 $W/m^2$, respectively. Results of the numerical experiments demonstrated that the water retention pavement tends to induce the increase of latent heat flux associated with the lower surface temperature and mixing height during the daytime. Discontinuity of latent heat caused by the water retention pavement also tends to promote the development of mesoscale circulation called as land-land breeze or country breeze.

보수성 포장재가 지표면 열수지와 중규모 순환장에 미치는 영향을 파악하기 위하여 수치실험과 야외 관측을 실시하였다. 수치실험에 이용된 모형은 LCM(Local Circulation Model)이며, 야외 관측은 대기가 안정되어 날씨가 맑은 2007년 7월 19일 실시되었다. 야외 관측실험에서 보수성 포장재 지표면 온도의 최대치는 1430 LST에서 $41.2^{\circ}C$이고, 보수성 재료가 도포되어 있지 않은 일반 아스팔트보다 $16.1^{\circ}C$ 낮게 관측되었다. 수치실험에서는 증발효율 0.3을 가정한 case BET03에서 관측과 가장 유사한 값을 나타내었다. 이때 현열과 잠열플럭스는 각각 227 와 229 $W/m^2$이다. 수치실험 결과, 보수성 포장재는 낮은 지표면 온도, 혼합고와 관련된 잠열플럭스를 높이는 경향이 나타난다. 보수성 포장재에 의한 잠열플럭스의 불연속은 교외풍과 같은 중규모 순환장의 발달을 강화시키는 역할을 한다.

Keywords

References

  1. 김인수, 한의석, 이광호, 2008, 열섬완화 아스팔트 포장기술. 도로, 10, 11-16
  2. 김병훈, 강준구, 이재응, 여운광, 2001, 실험을 통한 투수성 포장재의우수유출 저감효과에 관한 연구. 한국토목학회 학술발표 논문집, 1281-1384
  3. 박승범, 이병재, 이준, 장영일, 2007, 슬래그골조와 플라이 애시를 이용한 강섬유 보강 포장용 투수 콘크리트의 역학적 특성에 관한 실험적 연구. 한국도로학회, 9, 93-104
  4. 이순환, 김인수, 김해동, 2008, 도로포장 기술 개선에 따른 대기 경계층의 열 변화에 관한 연구. 한국대기환경학회지, 24, 551-561 https://doi.org/10.5572/KOSAE.2008.24.5.551
  5. 이순환, 이화운, 김유근, 2002, 복잡지형에서 도시화에 따른 대기오염 확산에 관한 시뮬레이션. 한국대기환경학회지, 18, 67-83 https://doi.org/10.5572/KOSAE.2008.24.5.551
  6. 류남형, 유병림, 2006, 투보수성 시멘트 콘크리트 포장의 열물성 및 수분보유 특성이 표면 온도에 미치는 영향. 한국조경학회지, 34, 21-36
  7. Asaeda, T. and Ca, V.T., 1993, The subsurface transport of heat and moisture and its effect on the environment: A numerical model. Boundary Layer Meteorology, 65, 159-179 https://doi.org/10.1007/BF00708822
  8. Dierkes, C., Kuhlman, L., Kandasamy, J., and Angelis, G., 2002, Pollution retention capability and maintenance of permeable pavements. Proceedings of the ninth international conference on urban drainage, Portland, USA, 8-13
  9. Hagishima, A. and Tanimoto, J., 2003, Field measurements for estimating the convective heat transfer coefficient at building surface. Building Environment, 38, 873-881 https://doi.org/10.1016/S0360-1323(03)00033-7
  10. Kikuchi, Y., Arakawa, S., Kimura, F., Shirasaki, K., and Nagano, Y., 1981, Numerical Study on the Effects of Mountains on land and Sea Breeze Circulation in the Kanto District. Journal of Meteorological Society of Japan, 59, 723-737
  11. Kimura, F. and Kuwagata, T., 1993, Thermally induced wind passing from plain to basin over a mountain range. Journal of. Applied Meteorology, 23, 1538-1547
  12. Klemp, J.B. and Durran, D.R., 1983, An upper boundary condition permitting internal gravity wave radiation in numerical mesoscale models. Monthly Weather Review, 11, 430-444
  13. Kondo, J., 1994, Mizuzyunkan no Kisyougaku. Asakura Press, Japan, 137 p. (in Japanese)
  14. Kondo, J., Nakamura, T., and Yamazaki, T., 1991, Estimation of the solar and downward atmospheric radiation. Tenki, 38, 41-48. (in Japanese)
  15. Lee, S.H. and Kimura F., 2001, Comparative studies in the local circulations induced by land-use and by topography. Boundary Layer Meteorology, 101, 157-182 https://doi.org/10.1023/A:1019219412907
  16. Lee, S.H. and Kim, H.D., 2008, Effects of regional warming due to urbanization on daytime local circulations in a complex basin of the Daegu Metropolitan Area, Korea. Journal of Applied Meteorology and Climate, 47, 1427-1441 https://doi.org/10.1175/JAMC1504.1
  17. Lee, S.H. and Kim, H.D., 2009, Modification of nocturnal drainage flow due to urban surface heat flux. Boundary Layer Meteorology (now print)
  18. Mellor, G.L. and Yamada, T., 1982, Development of a turbulence closure model for geophysical fluid problems. Reviews of Geophysics and Space Physics, 20, 851-875 https://doi.org/10.1029/RG020i004p00851
  19. Orlanski, I., 1976, A simple boundary condition for unbounded hyperbolic flows. Journal of Computational Physics, 21, 251-269 https://doi.org/10.1016/0021-9991(76)90023-1
  20. Oleson, K.W., Bonan, G.B., Feddema, J., and Vertenstein, M., 2008, An urban parameterization for a global climate model. Part II: Sensitivity to input parameters and the simulated urban heat island in offline simulations. Journal of Applied Meteorology and Climate, 47, 1061-1076 https://doi.org/10.1175/2007JAMC1598.1
  21. Oliveti, G., Arcuri, N., and Ruffolo, S., 2003, Experimental investigation on thermal radiation exchange of horizontal outdoor surfaces. Building and Environment, 83, 83-89
  22. Prasad, B.N. and Saini, J.S., 1988, Effect of artificial roughness on heat transfer and friction factor in a solar heater. Solar Energy, 41, 555-560 https://doi.org/10.1016/0038-092X(88)90058-8
  23. Pomerantz, M., Pon, B., Akbari, H., and Chang, S.C., 2000, The effect of pavement's temperatures on air temperature in large cites, Berkely CA. Lawrence Berkeley National Laboratory, LBNL-43442, 22 p