섬유보강 고인성 시멘트 복합체 패널의 2축 전단 비선형 모델

Nonlinear Biaxial Shear Model for Fiber-Reinforced Cementitious Composite Panels

  • 투고 : 2009.09.28
  • 심사 : 2009.10.30
  • 발행 : 2009.12.30

초록

본 연구에서는 철근 보강된 Engineered Cementitious Composite(ECC) 면내요소에 대한 2축응력 상태에서의 면내전단거동에 관한 예측 모델을 제시하였다. 기존의 철근콘크리트와 상이한 특성, 즉 ECC 요소의 복수미세균열 현상에 의한 높은 연성의 인장 거동, 일반 콘크리트에 비하여 연성적인 압축 연화 거동, 그리고 ECC 균열면에서의 전단전달 거동 특성 등을 모델에 반영하였다. 면내 순수전단거동에 대한 실험 및 해석결과를 통하여 개발된 R-ECC-MCFT 모델은 ECC 면내전단거동 예측에 효과적인 것으로 평가되었다. 또한 철근 보강된 ECC 면내요소는 철근콘크리트 면내요소에 비하여 최대전단강도 및 전단변형률이 증가하기 때문에 면내전단변형에서 높은 연성을 확보하는 것으로 평가되었다.

The present study has been proposed a model for the in-plane shear behavior of reinforced(Engineered Cementitious Composite(ECC) panels under biaxial stress states. The model newly considers the high-ductile tensile characteristic of cracked ECC by its multiple micro-cracking mechanism, the compressive strain-softening characteristic of cracked ECC, and the shear transfer mechanism in the cracked interface of ECC element. A series of numerical analyses were performed, and the predicted curves were compared with experimental results. The proposed in-plane shear model, R-ECC-MCFT, was found to be well matched with the experimental results, and it was also demonstrated that reinforced ECC panel showed more improved in-plane shear strength and post peak behavior, in comparing with the conventional reinforced concrete panel.

키워드

참고문헌

  1. 김윤용 (2003) 습식스프레이공법으로 타설된 고인성 섬유보강모르타르(ECC)의 역학적 특성과 보수 성능, 한국콘크리트학회 논문집, 15(3), pp.462-469 https://doi.org/10.4334/JKCI.2003.15.3.462
  2. 김윤용, 박연동 (2004) 거더교의 슬래브 연속화를 위하여 도입한 ECC 연결슬래브의 설계개념 및 적용방안, 대한토목학회 논문집, 24(6A), pp.1151-1158
  3. 김윤용, 조창근, 하기주, 배수호 (2006) 고성능 섬유복합재료 HPFRCC의 개발전략, 콘크리트학회지, 18(3), pp.82-86
  4. 조창근 (2004) FRP 콘크리트 복합구조 부재시스템의 휨 및 전단 거동예측, 대한건축학회 구조계 논문집, 20(8), pp.35-42
  5. Cho, C.G., Ha, G.J., Kim, Y.Y. (2008) Nonlinear Model of Reinforced Concrete Frames Retrofitted by In-Filled HPFRCC Walls, Structural Engineering and Mechanics, 30(2), pp.211-223
  6. Cho, C.G., Kwon, M. (2004) Development and Modeling of Frictional Wall Damper and Its Applications in R/C Frame Structures, Earthquake Engineering and Structural Dynamics, 33(7), pp.821-838 https://doi.org/10.1002/eqe.379
  7. Cho, C.G., Kwon, M. (2008) Prediction of Nonlinear Bending Behavior for FRP Concrete Beams Based on Multi-Axial Constitutive Laws, Engineering Structures, 30, pp.2311-2320 https://doi.org/10.1016/j.engstruct.2008.01.010
  8. Cho, C.G., Kwon, M., Spacone, E. (2005) Analytical Model of Concrete-Filled Fiber-Reinforced Polymer Tubes based on Multiaxial Constitutive Laws, ASCE Journal of Structural Engineering, 131(9), pp.1426-1433 https://doi.org/10.1061/(ASCE)0733-9445(2005)131:9(1426)
  9. Fukuyama, H., Suwada, H. (2003) Basic Test on Compressive Properties of High Performance Fiber Reinforced Cementitious Composites(Part 2 Biaxial Loading Test), Summaries of Technical Papers of Annual Meeting, Architectural Institute of Japan, pp.421-422
  10. Hakuto, S., Ozawa, J., Watanabe, K., Nakamura, H. (2001) Test on structural walls using fiber reinforced cement composite, Summaries of Technical Papers of Annual Meeting of AIJ, C-2, pp.53-54(in Japanese)
  11. Hisabe, N., Yoshitake, I., Tanaka, H., Hamada, S. (2005) Mechanical Behavior of Fiber Reinforced Concrete Element Subjected to Pure Shearing Stress, Int. Workshop on High Performance Fiber Reinforced Cementitious Composites in Structural Applications, pp.1-7
  12. Kim, J.K., Kim, J.S., Ha, G.J., Kim, Y.Y. (2007) Tensile and fiber Dispersion Performance of ECC (Engineered Cementitious Composite) Produced with Slag Particles, Cement and Concrete Res., 37(7), pp.1096-1105 https://doi.org/10.1016/j.cemconres.2007.04.006
  13. Kim, Y.Y., Fischer, G., Li, V.C. (2004) Performance of Bridge Deck Link Slabs Designed with Ductile Engineered Cementitious Composite(ECC), ACI Structural Journal, 101(6), pp.792-801
  14. Kim, Y.Y., Kim, J.S., Kim, J.K. (2007) Diverse Constructability of ECC Designed with Ground Granulated Blast Furnace Slag, International J. of Concrete Structures and Materials, 1(1), pp.11-19 https://doi.org/10.4334/IJCSM.2007.1.1.011
  15. Kim, Y.Y., Kim, J.S., Ha, G.J., Kim, J.K. (2005) Influence of ECC Ductility on the Diagonal Tension Behavior(Shear Capacity) of Infill Panels, Int. Workshop on High Performance Fiber Reinforced Cementitious Composites in Structural Applications
  16. Li, V.C. (1992) Post-Crack Scaling Relations for Fiber Reinforced Cementitious Composites, ASCE Journal of Materials in Civil Engineering, 4(1), pp.41-57 https://doi.org/10.1061/(ASCE)0899-1561(1992)4:1(41)
  17. Li., V.C. (1993) From Micromechanics to Structural Engineering-The Design of Cementitious Composites for Civil Engineering Applications, Journal of Structural Mechanics and Earthquake Engineering, JSCE, 10(2), pp.37-48
  18. Mikame, A., Fukuyama, H., Suwada, G., Satoh, Y. (1998) Study on ductile cement composite for structural elements(Part III Shear test of structural walls), Summaries of Technical Papers of Annual Meeting of AIJ, C-2, pp.935-936(in Japanese)
  19. Nagai, S., Kanda, T., Maruta, M., Miyashita, T. (2002) Shear Capacity of Ductile Wall with High Performance Fiber Reinforced Cement Composite, Proceedings of the 1st fib Congress, pp.767-774
  20. Vecchio, F.J., Collins, M.P. (1986) The Modified Compression-Field Theory for Reinforced Concrete Elements Subjected to Shear, ACI Journal, 83(2), pp.219-231
  21. Vecchio, F.J., Emara, M.B. (1992) Shear Deformations in Reinforced Concrete Frames, ACI Journal, 89(1), pp.46-56
  22. Walraven, J.C. (1981) Fundamental Analysis of Aggregate Interlock, Proceedings, ASCE, 107(ST11), pp.2245-2270