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FULL NON-RIGID GROUP OF 2,3 ,5,
6-TETRAMETHYLEPYRAZINE AS WREATH PRODUCT AND
ITS SYMMETRY

MAJID AREZOOMAND AND BIJAN TAERI*

ABSTRACT. The non-rigid molecule group theory in which the dynamical
symmetry operations are defined as physical operationsis applied to deduce
the character table of the full non-rigid molecule group (f-NRG) of 2,3,5,6-
Tetramethylpyrazine The f-NRG of this molecule is seen to be isomorphic
to the group Z31(Za X Z2), where Zj, is the cyclic group of order n, of order
324 which has 45 conjugacy classes. We determine the some properties and
relations between characters of the group. Also, we examine the symmetry
group of this molecule and show that its symmetry group is Zg X Za.
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1. Introduction

A non-rigid molecule is a molecular system which presents large amplitude
vibration modes. This kind of motion appears whenever the molecule possesses
various isoenergetic forms separated by relatively low-energy barriers. In such
cases, intermolecular transformations occur.

Following Y. G. Smeyers [17]-[19] the complete set of the molecular conver-
sion operations that commute with the nuclear motion operator will contain
overall rotation operations that describe the molecule rotating as a whole, and
intermolecular motion operations that describe molecular moieties moving with
respect to the rest of the molecule. Such a set forms a group, which we call the
full non-rigid molecule group (f-NRG).

Balasubramanian (see for example [6] and [7]) was the first chemist who cal-
culated the non-rigid group of molecules using wreath product formalism. He
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also computed the character table of non-rigid groups under consideration, us-
ing a well-known method for computing the character table of groups which is
representable as a wreath product of two groups.

The method described in the present study is appropriate for molecules that
consist of a number of X H3 groups attached to a rigid framework [20]. An
example of this molecule is 2, 3, 5, 6-Tetramethylpyrazine, which is considered
in some detail. We first specify the algebraic structure of the full non-rigid group
of 2, 3, 5, 6-Tetramethylpyrazine. We will show that the f-NRG of 2, 3, 5, 6-
Tetramethylpyrazine can be represented by the wreath product of some known
groups. Then based on the structure of the group we apply a useful programming
language, namely GAP [22], and compute the character table of f-NRG of this
molecule. Note that we can use GAP to find many properties of the groups.

We use reference [13] for the standard notations and terminology of character
theory. The motivation for this study is outlined in [1}-[12], [14]-[20], [23] and
the references therein, and the reader is encouraged to consult these papers for
background material as well as basic computational techniques.

In this paper we also compute the symmetry group of 2, 3, 5, 6 - Tetram-
ethylpyrazine. Symmetry operations on a graph are called graph automorphisms.
They affect only the labels of vertices by per-muting them so that the adjacency
matrix of the graph remains unchanged. The graph symmetry is completely de-
termined by all the automorphisms it has, i.e. by specifying all the permutations
that leave the adjacency matrix intact.

The automorphism group of a graph depends only on the connectivity of the
graph but does not depend on how the graph is represented in three dimen-
sions. That is, a graph, in general, can be represented in different ways in three
dimensions such that two representations can yield different three-dimensional
symmetries and yet their automorphism groups are the same since the latter
depend only on which vertices are connected in the graph. For this reason the
symmetry of a graph was thought to be quite different from the point group sym-
metry and it is apparent that the two symmetries need not be related to each
other. Randic [14], [15] showed a graph can be depicted in different ways such
that its point group symmetry or three dimensional perception may differ, but
the underlying connectivity symmetry is still the same as characterized by the
automorphism group of the graph which by definition comprises permutations
of the vertices of the graph that leave the adjacency matrix invariant. However,
the molecular symmetry depends on the coordinates of the various nuclei that
are related directly to their three dimensional geometry. Although the symmetry
as perceived in graph theory by the automorphism group of the graph and the
molecular group are quite different, Balasubramanian has shown that the two
symmetries are connected [8].

The topic of perceiving the symmetry of a graph through the automorphism
group of the graph has been studied in considerable depth (see for example [11],
[8], [12], [14]-[16]) but the connection between the graph automorphism problem
and the symmetry of a molecule has not been explored as much. Although the
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symmetry as perceived in graph theory by the automorphism group of the graph
and the molecular group is quite different, it is shown in this paper that the two
symmetries are connected for 2, 3, 5, 6-Tetramethylpyrazine. By symmetry we
mean the automorphism group symmetry of a graph. The symmetry of a graph,
which is also called a topological symmetry, accounts only for the bond relations
between atoms, and does not fully determine molecular geometry. The symmetry
of a graph does not need to be the same as (i.e., isomorphic to) the molecular
point group symmetry. However, it does represent the maximal symmetry the
geometrical realization of a given topological structure may possess. The reader
is encouraged to consult references [1], [4], [5], [6], [23], for background material
and computational techniques on this topic.

2. Wreath product

In this section we describe briefly some notation which will be used in the
next section. Let N be a normal subgroup and H be a subgroup of a group G
such that NN H = {e} and G = NH = {2y | ¢ € N,y € H}. Then we say
that G is a semidirect product of N by H denoted by N x H. Note that if H
is also a normal subgroup of G, then G = N x H is the direct product of N
and H. If G = N x H, then each z € G can be written uniquely as z = nh for
some n € N and h € H, and there is homomorphism ¢ : H — Aut{N), such
that (h)p = @4, where @5 : N — N is defined by (n)¢n, = h~nh. We call ¢
conjugation homomorphism of the semi direct product G and write G = N x, H.

We can see that if the homomorphism ¢ : H — Aut(N) defined above is
trivial, then the semidirect product reduces to the direct product N x H. It is a
well-known fact that the homomorphism completely determines the semidirect
product.

Suppose X is a set. The set of all permutations on X, denoted by Sx,
is a group which is called the symmetric group on X. In the case that, X =
{1,2,...,n}, we denote Sx by S,. Let H be group acting on X. This is
equivalent to the existence a homomorphism from H into Sx. Suppose also
that G is a group. The set of all mappings X — G is denoted by G¥, i.e.
GX ={f| f: X — G}. Tt is clear that |GX| = |G||X|. We put GWr(X)H =
GX xH={(f,mr)| f € GX,m € H}. For f € GX and = € H, we define an
action of H on GX, by f* € GX by f* = f*(z) = f(zm), where z7 = (2)7
is the image of x € G under the permutation =. It is easy to check that the
following law of composition

(.f7 7r)(g, U) = (fgﬂ-7 71-0-)7

makes G Wr(X) H into a group. This group is called the wreath product of G
by H with respect to the action of H on X. If the action of H on X is faithful,
that is the homomorphism from H into Sy is one to one, then H is a subgroup of
Sx and we call H a permutation group on X. In this case G Wr(X) H is called
the standard wreath product of G by H and denoted by G ! H. Note that each
function f € G can be identified with its image (a1, ag, . . . a,), where a; = f(3).
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Therefore GX can be identified with G, G x G x---x G = {(a1, a2, ...,as) | a; €
G}, the group of n-tuples of elements of G. Now if f = (ay,az,...,a,) € GX
and 7 € H, then f™ = (aq)r,a2)r,- -+ 0(n)x). Hence GYH = GX x H =
{(a1,a2,...,an;7) | a; € G,m € H} and

(a1,02,...,8n;T)(b1, b2, . .., bn; 0) = (@1b(1)r, Q2D (n)s - - - s Anb(nym; TO).

3. Full non-rigid group of 2, 3, 5, 6-Tetramethylpyrazine

We know that full non-rigid group a molecule is semidirect product of the
point group and the internal isometric group [10]. First of all, we consider the
point group of the molecule in the rigid state. The point group of 2, 3, 5,
6-Tetramethylpyrazine is Cs,.The process of enumerating the symmetry oper-
ations of this molecule and arranging them in classes entails the adoption of
a numbering convention for the central atom of the molecule, central atom of
every methyl group, and the other atoms, such as proton nuclei, as shown in
Figure 1. We define the operations C3;, Cs2, Cs3 and Cs4, which are rotations,
in a positive sense, of four methyl groups. The existence of the four equivalent
methyl groups implies the existence of 3% isoenergetic conformations, described
by four equivalent C3 non-rigid subgroups. The internal isometric group is a
direct product of these four non-rigid subgroups, which generate with Cs; for
i=1,...,4 and contains 81 dynamical symmetry operations which describe 81
potential energy wells on the potential energy hyper surface.

Let us first consider operations that leave the framework of the molecule
unchanged. These operations are grouped according to their cycle structure;
operations which rotate different numbers of methyl groups must belong to dif-
ferent conjugacy classes. For a small group, the classes are conveniently found by
conjugating a particular element with all other elements. The resulting set then
forms one class, and repetition of this process eventually gives all the classes.
This becomes impracticable for large groups. However, it is simpler to find the
classes by inspection. Next, consider the operations that permute the nuclei of
the framework; these fall into sets corresponding to the classes of Cs,,. It is clear
that the point group Cs, has exactly two different types of non-identity elements
of the group Cs and o,.

To deduce the classes, the full non-rigid operations were divided into three
sets:

(<C31>X<032>><<C33>X<034>)>40'v
(<C31 > x <C32>x <C33>x <C34>) Xay

(<031>X<C32>><<033>><<034>)>402,

where x denotes the semidirect product and o, = Cyo,.

Let us denote the operation C§10g20§3054 by a;jkr- We use the notation
of Smeyers and Villa [19]. The multiplication of the first set by all similarity
operations of the group permits to separate its elements into 33 classes:
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a; = E = agooo a2 = 02000 + G0200 T @020 + dooo2
az = a1000 + o100 + @0010 + G0001 a4 = 1200 + 62100 + Goo12 T Goo21
a5 = 1100 + Goo11 a6 = Q2200 + Qo022

a7 = a2020 + 60202 ag = 1020 1+ a2010 + Qo102 + o201
ag = a1002 + a2001 + Go120 + o210 610 = a1202 + @2021 + @2120 + Qo212
ai1 = ari1zo0 + aii1o2 + @2011 + Qo211 a12 = azo20 + Qo220

Q13 = G2220 T G2202 + A2022 + Qo222 (14 = a1220 + G2102 + G2012 + Go221

15 = @1010 + Q0101 a16 = a1001 + Qo110
a17 = 1201 + A2110 + @G1021 + Qo112 a18 = a1110 + @1101 + @1011 + Qo111
Q19 = ag2210 + @2201 + A1022 + do122 azo = a1210 + a2101 + G2101 + Qo121
a21 = a1212 + A2121 a22 = a1211 + G1112 + 61121 + G2111
Q23 = @1222 + A2212 + Q2221 + 2122 G24 = Q1221 + Q2112
o5 = 1111 agze = Q1122 + A2211

Q27 = (2222

azg = [a2121 + @211 + A2001 + G1122 + 1212 + 1002 + G012 + Qo021 + Go000]Tw

azo = [a1122 + a2101 + G2221 + 2212 + G2011 + A2002 + G1120 + A1102 + G1222 +
a1210 + @1012 + @1121 + ao100 + Go220 + G211 + Qo010 + G0001]Tw

azo = [@2120 + a2111 + 62210 + G2201 + A2021 + @2000 + G1121 + G1112 + G1211 +
@1202 + @1022 + @1001 + Qo122 + Q0110 + Qo212 + Q0200 + Q0020 + G0002] 0w

az1 = [a2112 + a2100 + @2220 + A2202 + G2022 + G2010 + G1110 + @1101 + G1221 +
a1200 + 1020 + @1011 + Go111 + Qo102 + Go222 + Qo201 + Go021 + @0012)0

a3z = a2110 + Q2200 + 2020 + A1111 + @1201 + B1021 + Qo112 + 0202 + G0022]0w

azz = 62102 + 2222 + 2012 + @100 + G1220 + 1010 + o101 + o221 + Ao011]0w,

Where by [z+y+- - - ]2, we mean that zz,yz, . .. are belong to the same conjugacy
classes. In the same way, the multiplication of the second set by all the similarity
operations of the group permits us to select 6 classes:

b1 = [a2121 + a2112 + 2100 + @1221 + @1212 + a1200 + Go021 + G012 + A0000] 0w’
by = [az122 + G2110 + a2101 + 2221 + 2212 + @2200 + A1222 + @1210 + G1201 +
a1021 + @1012 + @1000 + Go121 + Go112 + Qo100 + Goo22 + G010 + 0001]Tw!
bz = [az120 + @2111 + 2102 + G2021 + @2012 + A2000 + @1121 + 1112 + G1100 +
@1220 + @1211 + @1202 + Qo221 + Qo212 + Qo200 + Q0020 + Q0011 + A0002|T v/
by = [ag222 + a2210 + 2201 + 1022 + @1010 + @1001 + 0122 + A0110 + @0101] 0
bs = [a2220 + @2211 + G2202 + G2022 + A2010 + A2001 + G1122 + @1110 + @1101 +
a1020 + @1011 + G1002 + o120 + G111 + Qo102 + Go222 + G210 + C0201]T
bs = [a2020 + @2011 + 2002 + a1120 + @111 + G1102 + Qo220 + A0211 + A0202] 0w’

Finally, the multiplication of the third set furnishes 6 classes:

c1 = [aoooo + @o201 + @o102 + @1020 + G1221 + a1122 + 2010 + 2211 + @2112)Ca
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c2 = [aooo2 + @020 + Qo200 + Go221 + 0101 + Q0122 + Q1010 + G1022 + G1211 +
a1220 + @1112 + @1121 + @2000 + G2012 + G2201 + @2210 + @ + 2102 + @2111]Ca

c3 = [aooo1 + o010 + @202 + @o211 + o100 + Qo112 + Q1000 + A1021 + A1201 +
a1222 + @1102 + @1120 + 62011 + G2020 + 2212 + 2221 + 2110 + G2122)C2

c4 = [aoo12 + @0021 + @oz210 + Go222 + Qo111 + Q0120 + @1002 + Q1011 + G1200 +
a1212 + ai101 + G1110 + G2001 + G2022 + A2202 + 2220 + 2100 + A2121]C2

¢s = [@go11 + @o212 + Go110 + G1001 + @1202 + G1100 + G2021 + Q2222 + a2120)C2

6 = [@0022 + @o220 + @0121 + Q1012 + G1210 + @111 + G2002 + 2200 + a2101)Ca.

Therefore 45 conjucacy classes are obtained.
In order to separate the possible irreducible representations, it is convenient
to distinguish five types of possible symmetry eigenvectors:

(1) The functions conserve the C3 symmetry of the four methyl groups,
(2) The functions conserve the C3 symmetry of only three of them,

(3) The functions conserve the C3 symmetry of only two of them,

(4) The functions conserve the C3 symmetry of only one of them,

(5) The functions do not exhibit any C3 symmetry at all.

From the symmetry eigenvectors the characters of each representation are easily
deduced for all the classes by simple application of the symmetry operations. In
addition, the orthogonality rules between the different representations may be
used. But it takes tremendous computations. In below we use GAP package to
compute the character table of the non-rigid group of this molecule.

We construct the non-rigid group of the molecule under consideration, so
that one can handle it by GAP. First of all, we consider the point group of the
molecule in the case of a rigid framework. We consider the full non-rigid group
W (f-NRG) of this molecule, each equilibrium co formation of which has an
ordinary point group symmetry Cly,.

In order to characterize full non-rigid of this molecule, we first note that
each dynamic symmetry operation of the molecule, considering the rotations of
methyl groups is composed of two sequential physical symmetry operations. We
first have a physical symmetry of framework (as we have to map the methyl
groups on methyl groups). Before going into the details of the computations
of the molecule, we should mention that we consider the speed of rotations of
methyl groups sufficiently high so that the mean time dynamical symmetry of
the molecules makes sense.

Now consider symmetry operations of this framework. This operations form
an abelian group H of order 4, which is not cyclic so it is isomorphic to Klein’s
group. This group is isomorphic to Zs x Zs, where Zs is cyclic group of size 2.

After accomplishing the first framework symmetry operation we have to map
each methyl group on itself which forms the group G isomorphic to Zs, cyclic
group of size 3. The number of all such operations is 324. The composition of
such dynamic symmetry operations are described as follows. We first note that
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F1GURE 1. The structure of 2, 3, 5, 6-Tetramethylpyrazine.

each dynamic symmetry operation of this molecule, considering the rotations of
C Hj3 groups, discomposed of two sequential physical operations. First we have
a physical symmetry of the molecule, consist of four carbon atoms (that form
methyl groups) which are denoted by a, b, ¢, d; and four carbon atoms which are
denoted by A, B,C, D; and two nitrogen atoms which are denoted by F and
F', as shown in Figure 1. Such operations are exactly the symmetries of the
decagon framework {a,b,c,d, A, B,C,D, E, F'} which form a group H of order
four. Under the reflection with respect to the plane containing two nitrogen
atoms carbon atoms are interchanged and hence we should have inserted

X1 = (a,b)(4, B)(d, c)(D, C)
in H. The reflection with respect to the plane bisecting AD and BC yields that
Xz = (a,d)(A, D)(b,¢)(B,C)(E, F)

is an element of H. Clearly the group H generates by these permutation, and
S0

H = {(), (a,b)(4, B)(d, c)(D, C), (a,d)(4, D)(b, c)(B, C), (a, c)(A, C) (b, d)(B, D)}

The £-NRG of the molecule is completely characterized the motion of methyl
groups, as the other carbon atoms and nitrogen atoms follow the motion of the
methyl groups. So A, B,C, and D don’t have any effect on our calculations.
Therefore we may omitted the permutation (A, B),(D,C),(B,C) and (B, D);
and in this case we have

H= {0’ (aa b)(dv C)v (a7 d)(b7 C)’ (av C)(bv d)}

After accomplishing the first framework symmetry operations we must map each
C Hj group on itself. Since one half of the rotations on each C H3 group are possi-
ble, therefore the symmetry group of each C Hg is the set of all even permutations
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on 3 letters, namely Z3. Referring to Figure 1, the group of each CHj at the
four corners of the framework is given in terms of permutations as follows:

K1 =((1,2,3)), K2 = {(4,5,6)), K3 = ((7,8,9)), K1 = (10,11, 12)).

Therefore the full non-rigid group of 2, 3, 5, 6 tetramethylpyrazine has the
following structure

WI(K1XK2XK3XK4))4H,

where x denotes the semi-direct product. Hence, we can identify every element
of W, as a vector (a1,as, as,as;b) such that that a; € K; and b € H. It is
clear that H permutes K; and so W can be written in terms of wreath product
W = K1 H = Z31(Z2 X Z3), where K is the cyclic group of order 3. Note that
W has order 324. We now apply GAP to construct a group isomorphic to this
group as follows

H:=Group((1,2)(3,4),(1,3)(2,4));
G:=Group((1,2,3));
W:=WreathProduct (G,H);
MinimalGeneratingSet (W) ;

[(1,4,3,6,2,5)(7,10,8,11,9,12), (1,9)(2, 7)(3,8)(4, 11,5, 12, 6, 10)]

By above description it is clear that wreath product of G by H, denoted by W,
is the full non-rigid group of this molecule. W is generated by

{(1,4,3,6,2,5)(7,10,8,11,9,12), (1,9)(2, 7)(3,8)(4, 11, 5,12, 6, 10)}.

The character table and representative and sizes of the conjugacy classes of full
non-rigid group of this molecule can be found by GAP.

4. Character table of -NRG of 2, 3, 5, 6-Tetramethylpyrazine

In this section we find, using GAP, other information on the full non-rigid
group of the molecule under consideration.

After applying GAP program we find that W has 45 conjugacy classes and
therefore have 45 irreducible characters. Since the size of factor group of W
modulus

W = ((7,9,8)(10,11,12), (4,6,5)(7,8,9), (1,2, 3)(4,5,6)(7,8,9)(10,11,12)),

the derived subgroup of W, is 12. So W has exactly 12 irreducible characters
of degree 1. Let us denote these characters by x1, X2 , X3, X4 » X5, X6 » X7> X8
» X9, X10 5 X11, X12- It can be seen that the group of linear characters of W is
generated by two linear characters of order 2 and 6, namely 3 and ys. We find
that W has 18 characters of degrees 2 and 15 characters of degrees 4. Also we
can see that W has 28 non-trivial normal subgroups. Now find relations between
irreducible characters. Put
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N ={((4,5,6)(7,9,8),(1,3,2)(4,5,6)(7,9,8)(10,11,12), (1,11, 3,10,2,12)(4,8,6,7,5,9))
M ={(1,3,2)(4,5,6)(7,9,8)(10,11,12), (1,3,2)(4,5,6), (1,6,2,4, 3,5)(7,12,8,10,9, 11))
K ={(4,5,6)(10,12,11),(1,3,2)(4,5,6)(7,8,9)(10,12,11),(1,8, 3,7,2,9)(4,11,6,10,5, 12))
D = ((1,2,3)(4,5,6)(7,9,8)(10,12,11), (7,9, 8)(10,12,11))
E = {(1,2,3)(4,5,6)(7,8,9)(10,11,12), (1,2,3)(10,11,12))
F =((1,2,3)(4,5,6)(7,8,9)(10,11,12), (1,2, 3)(7,8,9))
G = ((1,2,3)(4,5,6)(7,8,9)(10,11,12)}.
These subgroups of W are all normal in W. The factor groups of W modulus
each of N, M, K are isomorphic to S3, the symmetric group on three symbols.
The factor groups of W modulus each of D, FE, F are isomorphic to group
S3 x S isomorphic by the group J := {((1,2,3)(5,6), (2,3)(4,5,6)); and finally
the factor group of W modulus G, is isomorphic to group L = (z,y | 2% =
y® = 1,272y 2 = y22). Now S3 has one irreducible character of degree 2, so
we obtain three irreducible characters of W by lifting this characters to W. We
denote these irreducible characters by x14, X16, X18, respectively. Now J is
a group of size 36 and has 9 conjugacy classes, four irreducible characters of
degree 1, four irreducible character of degree 2 and one of degree 4. Hence we
obtain three irreducible characters of W by lifting the irreducible character of
J of degree 4 to W; we denote these irreducible characters by xss, Xs2, X31,
respectively. Also L is a group of size 108 and has 15 conjugacy classes, hence
has 153 irreducible characters, four of degree 1, six of degree 2 and five of degree
4. The characters a2, xa3 are obtained by lifting the irreducible characters of
L of degree 4.

If ¢ is a linear character of W, then for any irreducible character x of degree
n, the Kronecker product @y is also an irreducible character of degree n. Using
this fact, we obtain all irreducible characters of W of degree 2 and 4. These
characters are

X13 = X3X14, X14; X15 = X2X165 X16, X17 = X2X18, X18, X19 = X8X14, X20 =
X7X14, X21 = X6X14, X22 = X5X14, X23 = X6X16, X24 = X5X16, X25 = X10X16,
X26 = X9X16, X27 = X6X185 X28 = X5X18, X29 = X8X18, X30 = X7X18, X31,
X32, X33, X34 = X6X31, X35 = X5X31, X36 = X5X32, X37 = X6X32, X38 = X5X33,
X39 = X6X33, X40 = X5X43, X41 = X6X42, X42, X43; X44 = X6X43, X45 = X5X42-

The resulting character table is given in Table 1. In this Table, X’ denote the

complex conjugate of X. Also the values a, b, ¢, d, e and f are: a = —e™/3,
b= _362i7r/3 + 2€i7r/3’ c = —e2im/3 _ 2€i7r/37 d= e2i7r/3 _ 3ei7r/3’ e — _262'71'/37
f= 4e2im/3

Note that the representations corresponding to the characters x1,x3, X5, Xs,
X11, X12 are A representations and the representations corresponding to the char-
acters X2, X4, X7, X8, X9, X10 are B representations. F representations are the
representations corresponding to the characters y; for ¢ = 13,...,30. The re-
maining representations are G representations. Recall that the letters A and B
are used for one-dimensional irreducible representations, which are symmetric
and antisymmetric with respect to the rotation around the principal axis of the
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kx} where

denoted by Ck (k). Two elements z and y of K is said conjugate if ;here exist g

For every element k of group K, centralizer k in K is {zK | zk
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FiGURE 2. The Euclidean graph of the molecule.

K such that z = g~'yg, and conjugacy class of every element k of group K is set
of all elements of K where are conjugate with k and denoted by Clg (k). If K
be finite, then |Cr (k)| = |K|/|Clk (k)| and size of Ck (k) and Clg (k) are called
centralizer order and conjugacy length of k in group K respectively. To simplify
our argument we denote by na, nb, ne, ... the different conjugacy classes of
elements of order n in the group K. If the number of conjugacy classes of K is
t then the conjugacy vector of K is a vector with t array such that every array
is a conjugacy length for K. Similarly we can define centralizer vector of K.
Now we find these vectors for full non-rigid group of the molecule. Suppose
that V' is a conjugacy vector and U be centralizer vector of this group. Then we
have
V = (la,3a, 3b, 3¢, 3d, 3¢, 3f, 3¢, 3h, 3i, 34, 3k, 31, 3m, 3n, 30, 3p, 3¢, 3r, 35, 3t, 3u,
3v, 3w, 3z, 3y, 3z, 2a, 6a,6b, 6¢, 6d, 6¢, 20,6 f, 6g, 6h, 61,67, 2¢, 6k, 61, 6m, 61, 6o)
U = (324, 81,81,162,81,162, 162, 81, 162,81,81,81,81, 81, 162, 81,81, 162, 81, 81,
324, 81,162,162, 162,81, 324, 36, 18, 18, 36, 18, 36, 36, 18, 18, 36, 18, 36, 36, 18,
18, 36, 18, 36).

5. Symmetry of 2, 3, 5, 6-Tetramethylpyrazine

In this section we compute the symmetry group of 2, 3, 5, 6 - Tetram-
ethylpyrazine. Let us recall some notations and definitions. Let V(G) and E(G)
denote set of vertices and edges of a graph G. Automorphism group of a graph
G is set of permutations where permutation g is belong to this group if for two
adjacency vertices u and v, g(u) and g(v) be adjacent. This set with operation
of composition of permutations is automorphism group on V(G) and denoted by
Aut(G). By symmetry we mean the automorphism group symmetry of a graph.
The automorphism group of a graph depends only on the adjacency of vertices
of graph and dos not depend on its three dimensional geometry representation.
The symmetry of a graph need not be related to point group symmetry, because
a graph can be represented in different ways in three dimensions where these two
ways can give us two different three dimensional symmetries, however their au-
tomorphism groups are the same since this group depends only on which vertices
are adjacent in the graph.
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A weighted graph is a graph that vertices and edges of graph are weighted
by distinct weights. We compute automorphism group of weighted graph of this
molecule. Adjacency matrix of a weighted graph is defined as: A;; = wyy, if
1 j and vertices i and j are adjacent by an edge with weight wij, A;; = v, if
i = j and vertex i weighted by v;; otherwise A;; = 0. Note that v; can be taken
as zero if all the nuclei are equivalent. Otherwise one may introduce different
weights for nuclei in different equivalence classes and the same weight for nuclei
in the same equivalence classes.

Consider 2, 3, 5, 6-Tetramethylpyrazine to illustrate the Euclidean graph and
its automorphism group. It suffices to compute the Euclidean distances in terms
of the H-H bound lengths and then construct the Euclidean matrix. Since auto-
morphism group of the integer-weighted graph is identical to the automorphism
group of the original Euclidean graph, we don’t have to work with exact Eu-
clidean distances. Hence we weighted these distances so that distinct Euclidean
distances correspond to distinct integers. We compute Cartesian coordinates by
HyperChem 6.03 and find the Euclidean distances as shown in Table 2. The
Euclidean graph of the molecule is presented as Figure 2.

Note that we have rounded original distances to 2 decimal places. Now let us
use a Euclidean edge weighting for 2, 3, 5, 6 tetramethylpyrazine mapped from
Euclidean distances as
(1.78,3.04,3.98,2.47,6.38,5.58,6.13, 6.58, 6.6, 6.82, 5.13, 5.61, 4.59, 6.83, 2.92,

3.84,2.32,5) — (1,2,3,4,5,6,7,8,9,10,11,12,13, 14, 15, 16, 17, 18).

The integer matrix D of this weighted Euclidean graph is computed.

0 1 1 2 3 4 5 6 7 8 9 10]
1 0 1 3 11 3 12 13 12 8 14 8
1 1 0 4 3 2 7 6 5 10 9 8
2 3 4 0 1 1 8 9 10 5 6 7
3 11 3 1 0 1 8 14 8 12 13 12

p_| 43 2 1 1 0 10 9 8 7 6 5
5 12 7 8 8 10 0 1 1 15 16 17
6 13 6 9 14 9 1 0 1 16 18 16
7 12 5 10 8 8 1 1 0 17 16 15
8 8 10 5 12 7 15 16 17 0 1 1
9 14 9 6 13 6 16 18 16 1 0 1
10 8 8 7 12 5 17 16 15 1 1 0

Now we apply a MATLAB program to obtain Euclidean graph of the molecule:

>> n=size(a,1)

>> A=ones(n,n);
>>for i=1:n
A(i,1)=0;

End

>> gplot ( A,a ) ;
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A permutation of the vertices of a graph belongs to its automorphism group
if it satisfies P*AP = A, where P? is the transpose of permutation matrix P
and A is the adjacency matrix of the graph under consideration. There are n!
possible permutation matrices for a graph with n vertices. However, all of them
may not satisfy the above relation. Since n is large, to computing automorphism
group using GAP, we should split symmetric group (on n symbol) in classes and
then find the elements of automorphism group in all cases that need so much
time.

0 1.78 | 1.78 | 3.04 | 3.98 | 2.47 | 6.38 | 5.58 | 6.13 | 6.58 | 6.6 | 6.82
1.78 0 1.78 | 3.98 | 5.13 | 3.98 | 5.61 | 4.59 | 5.61 | 6.58 | 6.83 | 6.58
1.78 | 1.78 0 2.47 1398 | 3.04|6.13 | 5.58 | 6.38 | 6.82 | 6.6 | 6.58
3.04 | 3.98 | 247 0 1.78 | 1.78 | 6.58 | 6.6 | 6.82 | 6.38 | 5.58 | 6.13
3.98 | 5.13 | 3.98 | 1.78 0 1.78 | 6.58 | 6.83 | 6.58 | 5.61 | 4.59 | 5.61
2.47 | 3.98 1 3.04 | 1.78 | 1.78 0 6.82 | 6.6 | 6.58 | 6.13 [ 5.58 | 6.38
6.38 | 5.61 | 6.13 | 6.58 | 6.58 | 6.82 0 1.78 | 1.78 | 2.92 | 3.84 | 2.32
5.58 [ 4.59 | 558 | 6.6 | 6.83 | 6.6 | 1.78 0 1.78 | 3.84 5 3.84
6.13 | 5.61 | 6.38 | 6.82 | 6.58 | 6.58 | 1.78 | 1.78 0 2.32 | 3.84 | 2.92
6.58 | 6.58 | 6.82 | 6.38 | 5.61 | 6.13 | 2.92 | 3.84 | 2.32 0 1.78 | 1.78
6.6 | 683 | 66 | 5.58 | 4.59 | 5.58 | 3.84 5 3.84 | 1.78 0 1.78
6.82 | 658 | 6.568 | 6.13 | 5.61 | 6.38 | 2.32 | 3.84 | 2.92 | 1.78 | 1.78 0

Table 2. Euclidean distances of 2, 3, 5, 6 tetramethylpyrazine.

Let Aut(G) = {01,09,...,0mm}. The matrix S = [0,;], where 0;; = 0;(j) is
called a solution matrix for G. It is clear that S have m rows and n columns and
every row is a permutation on n symbol, for example if [2,1,3,6,5,4,7,8,9, 10,
11,12] be a row of S then this row correspond (1,2)(4,6). So it is clear that it
is enough to calculate a solution matrix. For this propose we use the MATLAB
program given in [1], and then compute this group. By adding the statement
b=round(b*100)/100; before the function ”jaigasht” in the MATLAB program
[1] we can specify the decimal digits for distances. After apply the MATLAB
program in [1], we obtain S:

123 456 7 & 9 10 11 12
g 3216 5 4 9 8 7 12 11 8
4 56 1 2 3 10 11 12 7 8 8
6 543 2112 1 10 9 8 7

Now apply below simple GAP program to compute automorphism group of the
molecule

H:=[1;

n:=Size(S);

for i in [1..n] do
a:=PermListList(S[1],8[i]);
AddSet (H,a);

0d;

aut :=AsGroup(H);
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The automorphism group is
Aut(G) = {(), (1,3)(4,6)(7,9)(10,12), (1,4)(2,5)(3,6)(7, 10)(8, 11)(9, 12),

(1,6)(2,5)(3,4)(7,12)(8,11)(9,10)},

which is a non cyclic group of order four. So it is isomorphic to Zg X Zs.

If

we change b = round(b x 100)/100 to b = round(b = 10)/10 we obtain the

same result. Thus in these cases automorphism group and point group of this
molecule are isomorphic. But if we change to b = round(b * 1000)/1000, then
we have Aut(G) = {(), (1,3)(4,6)(7,9)(10,12)}. In other cases we obtain that

Aut(G) = {()}.
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