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Abstract

This paper deals with nonparametric estimation of discontinuous regression curve. Quite number of re-
searches about this topic have been done. These researches are classified into two categories, the indirect ap-
proach and direct approach. The major goal of the indirect approach is to obtain good estimates of jump locations,
whereas the major goal of the direct approach is to obtain overall good estimate of the regression curve. Thus
it seems that two approaches are quite different in nature, so people say that the comparison of two approaches
does not make much sense. Therefore, a thorough comparison of them is lacking. However, even though the
main issue of the indirect approach is the estimation of jump locations, it is too obvious that we have an estimate
of regression curve as the subsidiary result. The point is whether the subsidiary result of the indirect approach
is as good as the main result of the direct approach. The performance of two approaches is compared through a
simulation study and it turns out that the indirect approach is a very competitive tool for estimating discontinuous
regression curve itself.

Keywords: Difference Kerne! estimators, discontinuous regression function, jump detector, jump-
preserving smoothing, local constant M-smoother.

1. Introduction

Suppose we want to estimate the regression function m using a sample of n data {(x;, ¥;),i=1,...,n)
generated from model (1.1).

Yi=m(x)+e, i=1,...,n (1.1

where ¢’s are independent and identically distributed with mean 0 and finite variance o, We assume
that the regression function m can be expressed by

r
m(x) = f()+ ) dil(x > s)), (1.2)
j=1

J

where f is a continuous function in the entire design interval, p is the number of jump points, {s;, j =
1,..., p} are the jump positions, and {d;, j = 1,..., p} are jump magnitudes.

Since the regression function of (1.2) has discontinuity points, the traditional smoothing such as
the local polynomial regression is not statistically consistent, so we need quite different smoothing
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methods. Quite a number of researches about estimating discontinuous regression function have been
done. These researches are classified into two categories. The first approach, which is called the
indirect approach by Gijbels et al. (2007), estimates the locations of the jump points first using one of
various jump detection procedure and then applies the traditional smoothing technique to each smooth
parts of regression function separately. The literature on indirect estimation method includes Miiller
(1992), Hall and Titterington (1992), Wu and Chu (1993a), Qiu and Yandell (1998), Park (2008),
among others. The second approach estimates the regression curve directly without detecting the
jumps explicitly, so it is called the direct approach or jump-preserving smoothing. The local constant
M-smoother by Chu ez al. (1998) and the local linear M-smoother by Rue ef al. (2002) are widely
used direct methods. Adaptive weights smoothing proposed by Polzehl and Spokoiny (2000) and the
jump-preserving curve fitting procedures proposed by Qiu (2003) and Gijbels et al. (2007) are also
the direct estimation methods.

The indirect approach is based on the jump detection procedure, so the major issue is to obtain
good estimates of jump locations, Once we have correct estimates of jump locations, we have a good
chace of getting accurate estimate of regression function. Thus estimation of regression function itself
is often secondary in the indirect approach. On the other hand, the major goal of the direct approach
is to obtain an overall good estimation of the regression function. In fact, the direct approach does
not even require correct estimates of jump location explicitly. It just treat every single data point as a
potential discontinuity point.

Apparently, two approaches have quite different major goals, so they look very different in nature.
In this point of view, people say that the comparison of two approaches does not make much sense
and it is even difficult to choose a proper criterion for comparison because of different major goals.
Therefore the research about the comparison of two approaches has not started yet.

However, even though the main issue of the indirect approach is the estimation of jump locations
and the estimation of regression function is just subsidiary, it is too obvious that we have the estimate
of the regression function as the subsidiary result. The point is whether the subsidiary result of the
indirect approach is as good as the main result of the direct approach. Gijbels et al. (2007) noted that
a good overall estimate of the regression function may not necessarily reveal jump locations and size
well. They actually presumed that the direct approach performs better than the indirect approach for
obtaining a good overall estimate of discontinuous regression function, but they did not provide any
evidence for their presumption.

In this paper, we want to compare the performance of two above-mentioned approaches for esti-
mating discontinuous regression function. Since this kind of comparison has never been tried before,
there is no relevant reference for this problem. Therefore, this paper may produce a premature result,
but will be a good starting point for this problem.

As the direct estimation method, we choose the local constant M-smoother proposed by Chu et
al. (1998), which is one of the most widely used direct method. This method is based on the local
constant fit, so to make the fair comparison the corresponding indirect estimation method should be
based on the local constant fit too. Thus we choose the difference kernel estimators{DKE}) as a jump
detector and the local constant regression as a smoother. However, the original DKE can be used
only if the number of jump is known, which is not the case in this paper. Park (2008) proposed the
jump detection procedure. His method is based on DKE and can be used when the number of jump is
unknown, so we choose his method as the jump detector for the indirect method.

The paper is organized as follows. In Section 2, we briefly describe the estimating procedures of
both approaches. A simulation study investigating the performances of two approaches in Section 3.
In Section 4, we provide some concluding remarks and further research topics.
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2. Estimation Procedures

In this section, we briefly describe both the local constant M-smoother by Chu ez al. (1998) and the
modified DKE procedure by Park (2008).

2.1. Local constant M-smoother

Throughout the paper, we assume that {(x;, ¥;),i = 1,..., n} are generated from model (1.1), where the
design points x; are equally spaced, and the regression function m is expressed by (1.2). We assume
that the number and the location of jumps are unknown, and the distance between any two of s; of
(1.2) is greater than 6. Here & is an arbitrary small positive constant. Without loss of generality, we
assume that m is defined on the interval [0,1].

For each x;, Chu et al. (1998) proposed to take the M-smoother i1y(x;) as the local minimizer with
respect to 6 of

S (6, x) = Z  (x = X)Lyt (Y, = 0) @1

that is closest to ¥;. Here K™ and LM are kernel functions, Ay and gy are two bandwidths, K} (-) =
hy KM(-/hag) and LY () = g3/ L™ (-/gur). For both kernel function K and LM they recommended to
use the Gaussian densuy function.

Like any other smoother, the performance of M-smoother heavily depends on the choice of the
bandwidth Ay, and gp. The bandwidth ki, works more like a traditional smoothing parameter, and
g acts like a tuning constant in usual M-estimation. They also provided some recommendation for
choice of both parameters, and we will look at them at Section 3.

In many cases, the local constant M-smoother gives remarkably good results. Especially, when
the true regression function is constant with abrupt changes at several locations, it shows an excellent
performance, preserving edges and spikes. Chu ez al’ (1998) derived the asymptotic bias and variance
of the local constant M-smoother and showed that it suffers from the boundary effect.

2.2. Modified DKE procedure

For given x € [g, 1 — g], the difference kernel estimator, Mpkp is defined as

Mpge(x) = i (x) — m_(x), (2.2)
where . .
. X — X Xi— X
m+(x)=;YiK1( 2 )/;Kl( P )
and

= 2 )
i=1 i=1

g is a smoothing parameter and K, and K, are kernel functions. Here the support of K; is [0,1] and
the support of K; is [-1,0).
The modified DKE procedure proposed by Park (2008) is based on the following testing problem

Hy: m(x)y=m_(x) ¥Yxe[0,1]
Hy: my(x)#m_(x) Ixel0,1].
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He considered the test statistic _,
Mpke(x) — e’ (x)

T(x)= , 2.3)
v Cz(')\'2
where
o o L = DK -0 B O~ DK - X)
! > K- %) i Kag(xi — %)
1 ng(xf -x) o Kﬁg(x; - x)
Cy = 3 + 3
[, Kigti - 0] [Z0) Kagli = )]
and

Kjglx - x) = Kj(xfgx), j=12

Under Hy, the asymptotic distribution of T is a standard normal distribution, so if [T(x)} = z1_a/2, for
any x € [0, 1] then we can reject Hy where z;_,/, is 100(1 - a/2)™ percentile of the standard normal
distribution.

Combing the estimation of the jump locations procedure based on Mpg and the testing procedure
using T'(x), §; is proposed to take the maximizers of |T(x)| over the sets A, where

j-1
A =lg1-gl—{Jl5-8 5 +el. 24
k=1
for j = 1,...,r, and r is a positive integer which is far less than n. Then p is defined as the number of
§; such that
TGPl 2z1-g, j=1,...,p. 2.5

After jump locations are estimated, the estimator of modified DKE procedure, fpgg(x) is now
obtained by applying the local constant regression to each B; separately, where

B;=1§-1,8], j=1,...,.p+L 2.6)

Here §o = O and §5,; = 1. We assume that we use the same bandwidth & when we apply local constant
regression estimator to each B;.

Any theoretical properties of #mpgr(x) is not derived yet, and it looks even very challenging.
Therefore, only empirical comparison of Ay and fipgg is possible in this paper. In Section 3, we
compare the finite sample properties of these two estimators using simulation study.

3. Simulation Study

In this section, we investigate the performance of two estimation procedures described in Section 2
by a simulation study.
We first introduce the simulation settings. We consider the following regression models:

mi(x) =2+ 2l(x > 51) ~ 3I(x 2 52),
my(x) = 2x + 11{x 2 51) + 0.51(x = 57),

—3x+ 2, X < 81,
sy = | ~3x+3—sin ((x - 0.3)6%), s <x<5,

X
-+ 1.55, Z §2,
3 X 2 8
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Figure 1: Left panel: graphs of the true regression functions my, m, and ms. Center panel: simulated data with
n = 100 and € ~ N(0, 0.1). Right panel: simulated data withn = 100 and € ~ N(0,0.5)

where s; = 0.3 and s, = 0.7 for all models. The design points are given by x; = (i — 1)/(n — 1) for
i = 1,...,n. The sample sizes considered are n = 20, 50, 100,200. The error terms are generated
from N(0, o) with o2 = 0.1,0.5. The typical data sets of each regression model for n = 100 along
with the true regression curves are presented in Figure 1.

S (8, x;) of (2.1) is too complicated to find a closed form for their local minimum. Chu et al.
(1998) provide sophisticated algorithm based on Newton’s method to find the local minimum closest
to Y;, but it is complicated to program. Simpson et al. (1998) suggest an iterative weighted least
squares(IWLS) algorithm, which is straightforward to program. Given an initial estimate Hfo), IWLS
updating with step ¢ is computed as follows:

Sy Kot (31— )Lt (¥ - 67,
KM (x,. - xk)% (v - ggn) .

For both kernel function K and LY, we choose the Gaussian density function. As a stopping
rule, if IHEI) - OEHI)I < 107>, then we take Ol@ as Ay (x;).

Although the IWLS algorithm can potentially find the wrong local minimum, Simpson et al.
(1998) argue that if one uses the data as starting values and reasonable bandwidths g and &y, there
is no problem for getting correct convergence. To use the data as starting values, we simply take
(JEO) =Y., i =1,...,n The bandwidth selection methods for both g4 and Ay, however, are not
well established. For g4, we have two different recommendation. Chu ez al. (1998) recommend the
range of g € [207/3,30/2] based on their empirical experience, but Burt (2000) recommends to take
gy = 2.110. The number 2.11 is determined by the Asymptotic Relative Efficiency(ARE) calculation.
We have examined two recommendation in the simulation, and it turns out that gy, = 2.114 produces
better results, so we report the simulation results only for the gy = 2.116" case.

For the estimator of o2, we use the trimmed mean version used in Wu and Chu (1993a), which is
defined as 62 = 0.y, €i/2(n—1-2v) where & denote the rearranged (Y; — Y:_1)? in ascending order,

(r+1) _
g =
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'IEI:}]g 1: The smallest MISE values along with their bandwidths based on 1000 replicau'gli, and
MISE,_y3 + MISE,.q7 values for given bandwidths. Ratio (last column) is the ratio of MISE(DKE) to
MISE(M-smoother).

o2 Modified DKE M-smoother .

n Ratio
h MISE > MISE, hu MISE > MISE

20 0.09 0.0526 0.0137 0.25 0.0159 0.0025 330

01 50 0.25 0.0073 0.0022 0.21 0.0088 0.0021 0.82

: 100 0.25 0.0034 0.0010 0.25 0.0679 0.0021 043

m 200 0.25 0.0018 0.0006 0.21 0.0049 0.0014 0.36
! 20 0.13 0.2129 0.0614 0.09 0.1669 0.0465 1.27
0.5 50 0.13 0.1060 0.0588 0.05 0.1037 0.0552 1.02

’ 100 0.23 0.0416 0.0254 0.05 0.0682 0.0450 0.60

200 025 0.0149 0.0089 0.03 0.0462 0.0284 0.32

20 0.15 0.0330 0.0089 0.09 0.0558 0.0096 0.59

o1 50 0.17 0.0210 0.0119 0.09 0.0367 0.0125 0.57

: 100 0.13 0.0110 0.0067 0.07 0.0263 0.0117 0.41

m 200 0.13 0.0063 0.0042 0.05 0.0168 0.0084 0.37
2 20 0.25 0.0852 0.0176 0.13 0.1243 0.0240 0.68
65 50 0.23 0.0529 0.0221 0.09 0.0608 0.0240 0.87

’ 100 0.19 0.0387 0.0210 0.07 0.0389 0.0196 0.99

200 0.13 0.0267 0.0161 0.05 0.0268 0.0151 0.99

20 0.09 0.0482 0.0092 0.09 0.0774 0.0162 0.62

0.1 50 0.07 0.0357 0.0164 0.05 0.0569 0.0221 0.62

’ 100 0.05 0.0256 0.0121 0.03 0.0455 0.0170 0.56

ms 200 0.03 0.0175 0.0079 0.03 0.0333 0.0154 0.52
7 20 0.25 0.1276 0.0242 0.25 0.1402 0.0183 0.91
05 50 0.13 0.0845 0.0330 0.07 0.0924 0.0366 0.91

: 100 0.11 0.0600 0.0265 0.05 0.0627 0.0302 095

200 0.09 0.0448 0.0208 0.03 0.0411 0.0207 1.09

and we choose v = 2.

The bandwidth A, works more like a traditional smoothing parameter, so the conventional data
adaptive bandwidth selection method, like cross-validation or plug-in rule can be used, but perfor-
mance of these methods for choosing /1, have not been thoroughly investigated yet. Thus instead of
using data adaptive method, we use several different values of iy in the simulation.

For the modified DKE procedure, the bandwidth g and % are also very important factors. The
bandwidth g is used for the jump detection procedure of (2.4), and & is used for the local constant
regression which is applied to each B; of (2.6). On the issue about the bandwidth g, however, little
work has been done. Gijbels and Goderniaux (2004) proposed the data-driven bandwidth selection
method using bootstrap procedure, but their method is complicated, so it is difficult to implement
in practice. Park (2008) investigated the effect of the bandwidth g to the modified DKE procedure
and found that the larger bandwidth produced the better results. We can observe the same empirical
evidence in Wu and Chu (1993a) and Bowman e 4l. (2006). Thus we may need to choose the value
of g as large as possible, but we can detect the discontinuity points only in the interval [g, 1 — g}, so
too large value of g should be avoided. We take g = 0.2 for the simulation, but this choice is rather
arbitrary.

For the bandwidth /2, we may use the cross-validation procedure proposed in Wu and Chu (1993b).
However, for the fair comparison, we use several different values of A just like the case of A.

For the kernel function of Mpgg in (2.2), we choose Ki(x) = 1.5(1 — x})ljo 13(x) and Kz(x) =
K;(~x) for all x. The first derivative estimate of regression function, #'(x) in T(x) of (2.3) is evaluated
by the function glkerns of the package lokern in R. The computation of the local constant regression
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Figure 2: Plots of two estimates for m;, n = 50, 0> = 0.5, h = 0.13 and hy, = 0.05((a), (b) The true regression

curve is denoted by the solid line. The average of 1000 replicated fits is denoted by the dashed line. The

corresponding 5" percentile and the 95" percentile are denoted by dotted lines. (c), (d) The solid line is for
M-smoother and the dashed line is for modified DKE)

estimates for each B; of (2.6) is done by R function ksmooth. The significance level for the procedure
(2.5)is set to a = 0.05.

We want to reemphasize that the main objective of two procedures is to obtain good overall esti-
mation of regression function m. Therefore a natural criterion for comparison of two procedure is the
Mean Integrated Squared Error(MISE). In order to avoid boundary effects the MISE is calculated for
the slightly smaller interval [0.1,0.9]. Since we estimate a jump regression curve, the curve estimates
also need to be jump-preserving. To measure jump-preserving around a given jump point s, Gijbels
et al. (2007) proposed to use the following local MISE:

s+0.05

MISE, = E [ f {(A(x) — m(x)}* dx|.
s—0.05

The number 0.05, the half-width of interval, is subjectively selected.

For each model, we estimate the MISE of two procedures based on 1000 replications for vari-
ous hy and h values, and report the smallest MISE of each procedure along with the corresponding
bandwidth in Table 1. We also report the estimated local MISE, @szog + @Fm based on the
bandwidth which produces the smallest MISE.

As we can see in Table 1. MISE and > ms show almost identical pattern. Moreover, during
the simulation, we have observed that the small values of ), @5 do not necessarily imply excel-
lent performance of jump-preserving. Maybe we need other criterion for measuring jump-preserving
property.

The regression model m; is the case that the underlying true regression function is constant with
abrupt changes at serval locations, and in this case, it is well known that the local constant M-smoother
gives remarkably good results, but it turns out that modified DKE procedure is competitive and even
better than M-smoother at large sample case. The M-smoother performs better than modified DKE
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Modified DKE M-smoother
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Figure 3: Plots of two estimates for my, n = 100, o2 = 0.1, h = 0.13 and hy = 0.07((a), (b) The true regression

curve is denoted by the solid line. The average of 1000 replicated fits is denoted by the dashed line. The

corresponding 5" percentile and the 95" percentile are denoted by dotted lines. (c), (d) The solid line is for
M-smoother and the dashed line is for modified DKE)

only for small sample case. For m; and m3 with o = 0.1, modified DKE is superior to M-smoother
for all sample sizes, and in fact, the relative performance of modified DKE, which is measured by the
ratio of m(DKE) to mS\E(M-smoother), is getting better as n increases. However, for m; and m;
with 0% = 0.5, we have different pattern. The modified DKE performs slightly better than M-smoother
only for n = 20 and 50 cases. Moreover, the relative performance of modified DKE is getting worse
as n increases. Eventually, for m; case, M-smoother has slightly smaller MISE at 7 = 200.

Figure 2 to 4 give the graphical display of the performance of two procedures. In (a) and (b) of
each plot, the dashed line represents the average of 1000 replicated fits, so the difference between
the solid and the dashed line can be considered as the estimated bias, and the difference between the
upper and lower dotted line is a kind of measure of variation about 1000 replicated fits. In Figure
2, we can see that two procedure have almost the same performance, except that modified DKE has
slightly larger variance at x = 0.3. In Figure 3 and Figure 4, we can see that modified DKE has
slightly larger bias at jump points, but M-smoother has much larger variance, which results in larger
MISE of M-smoother.

4. Conclusion

Even though the indirect approach and the direct approach have quite different major goals, the final
results of both approaches are the estimates of the regression curve. Surprisingly, however, the com-
parison of two approaches as the estimator of the discontinuous regression function has never been
done before. In this paper, we compared the performance of two approaches using the simulation
study and it turns out that the indirect approach is a very competitive tool for estimating regression
curve even though the major goal of the indirect approach is not the estimation of the regression curve
itself.

We only compared the local constant version of two approaches, but we know that the local linear
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Modified DKE M-smoother
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Figure 4: Plots of two estimates for ms, n = 200, o = 0.1, h = 0.03 and hy, = 0.03((a), (b) The true regression

curve is denoted by the solid line. The average of 1000 replicated fits is denoted by the dashed line. The

corresponding 5" percentile and the 95" percentile are denoted by dotted lines. (c), (d) The solid line is for
M-smoother and the dashed line is for modified DKE)

version is more appropriate in situations where the true curve is far from being constant but still con-
tains abrupt changes. We will extend the comparison to the local linear version of two approaches and
then we may have more concrete conclusion about which approach provides better overall estimate of
discontinuous regression function.

An important question which we have not addressed is how to choose smoothing parameters data-
adaptively. We do not have clear answer about how to choose gy, iy and g yet. The optimal selection
methods for these bandwidths need further study.
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