Chemical Compositional Distribution of Ethylene-1-Butene Copolymer Prepared with Heterogeneous Ziegler-Natta Catalyst: TREF and Crystaf Analysis

  • Ko, Young-Soo (Department of Chemical Engineering, Kongju National University) ;
  • Jeon, Jong-Ki (Department of Chemical Engineering, Kongju National University) ;
  • Yim, Jin-Heong (Department of Advanced Materials Engineering, Kongju National University) ;
  • Park, Young-Kwon (Faculty of Environmental Engineering, University of Seoul)
  • Published : 2009.05.31

Abstract

Ethylene-1-butene copolymers were prepared with $SiO_2$-supported $TiCl_4$ catalyst by changing of 1-butene/ethylene molar ratio in feed, and the resulting copolymers were analyzed using temperature rising elution fractionation (TREF) and crystallization fractionation (Crystaf) methods to investigated the influence of $C_4/C_2$ molar ratio in feed on chemical compositional distribution and other parameters such as molecular weight and its distribution. TREF analysis showed that the copolymers had a broad and bimodal chemical compositional distribution (CCD) regardless of the content of 1-butene in the copolymer. The chemical composition was in the range of 5 to 55 branches per 1,000 carbons for all copolymers prepared in the study. Furthermore, the broader CCD was revealed for the copolymers having the higher content of 1-butene. Crystaf analysis did not showed a bimodal CCD for the copolymers having the 1-butene content of less than 5.1 wt%. The lower crytalline part having 1-butene content in Crystaf analysis was less than of TREF analysis.

Keywords

References

  1. M. Zhang, D. T. Lynch, and S. E. Wanke, J. Appl. Polym. Sci., 75, 960 (2000) https://doi.org/10.1002/(SICI)1097-4628(20000214)75:7<960::AID-APP13>3.0.CO;2-R
  2. F. M. Mirabella, J. Polym. Sci. Part A: Polym. Chem., 39, 2800 (2001)
  3. L. Wild, Adv. Polym. Sci., 98, 1 (1991)
  4. C. Gabriel and D. Lilge, Polymer, 42, 297 (2001) https://doi.org/10.1016/S0032-3861(00)00314-1
  5. Y. S. Ko, T. K Han, H. Sadatoshi, and S. I. Woo, J. Polym. Sci. Part A: Polym. Chem., 36, 291 (1998) https://doi.org/10.1002/(SICI)1099-0518(19980130)36:2<291::AID-POLA12>3.0.CO;2-J
  6. Y. S. Ko, T. K Han, J. W. Park, and S. I. Woo, J. Polym. Sci. Part A: Polym. Chem., 35, 2769 (1997) https://doi.org/10.1002/(SICI)1099-0518(19970930)35:13<2769::AID-POLA22>3.0.CO;2-8
  7. Y. V. Kissin, F. M. Maribella, and C. C. Meverden, J. Polym. Sci. Part A: Polym. Chem., 43, 4351 (2005) https://doi.org/10.1002/pola.20875
  8. L. J. D. Britto, J. B. P. Soares, A. Penlidis, and B. Monrabal, J. Polym. Sci. Part A: Polym. Chem., 37, 539 (1999) https://doi.org/10.1002/(SICI)1099-0488(19990315)37:6<539::AID-POLB6>3.0.CO;2-O
  9. Y. V. Kissin and H. A. Fruitwala, J. Appl. Polym. Sci., 106, 3872 (2007) https://doi.org/10.1002/app.27090
  10. Y. S. Ko and J.-K. Jeon, Catal. Today, 132, 178 (2008) https://doi.org/10.1016/j.cattod.2007.12.013
  11. T. E. Nowlin, Y. V. Kissin, and K. P. Wagner, J. Polym. Sci. Part A: Polym. Chem., 26, 755 (1988) https://doi.org/10.1002/pola.1988.080260307
  12. Y. V. Kissin, F. M. Mirabella, and C. C. Meverden, J. Polym. Sci. Part A: Polym. Chem., 43, 4351 (2005) https://doi.org/10.1002/pola.20875
  13. M. Peeters, B. Goderis, H. Reynaers, and V. Mathot, J. Polym. Sci. Part B: Polym. Phys., 37, 83 (1999) https://doi.org/10.1002/(SICI)1099-0488(19990101)37:1<83::AID-POLB8>3.0.CO;2-#
  14. M. Zhang, D. T. Lynch, and S. E. Wanke, Polymer, 42, 3067 (2001) https://doi.org/10.1016/S0032-3861(00)00667-4
  15. D. M. Sarzotti, J. B. P. Soares, L. C. Simon, and L. J. D. Britto, Polymer, 45, 4787 (2004) https://doi.org/10.1016/j.polymer.2004.04.072
  16. S. Anantawarskul, J. B. P. Soares, and P. M. Wood-Adams, Adv. Polym. Sci., 182, 1 (2005) https://doi.org/10.1007/b135559