Verification of Core/Shell Structure of Poly(glycidyl methacrylate-co-divinyl benzene) Microspheres

  • Published : 2009.05.31

Abstract

The core/shell type structure of the highly crosslinked poly(glycidylmetharylate-co-divinylbenzene) microspheres prepared in the precipitation polymerization in acetonitrile was thoroughly verified by means of swelling, $^1H$ NMR, XPS, TEM and TGA measurements. In the XPS measurement, the higher the GMA content, the higher the oxygen content was observed, implying that the higher content of GMA is observed in the particle surface. The further verification of the core/shell structure of the poly(GMA-co-DVB) particles was carried out using $^1H$ NMR and TEM techniques, resulting in the poly(GMA-co-DVB) particles with the GMA rich-phase and DVB rich-phase. In overall, the poly(GMA-co-DVB) microspheres consist of a highly crosslinked DVB rich-phase in the core and slightly or non-crosslinked GMA rich-phase in the shell part due to the different reaction ratios between two monomers and self-crosslinking density of DVB.

Keywords

References

  1. M. A. Winnik, C.-L. Zhao, O. Shaffer, and R. R. Shivers, Langmuir, 9, 2053 (1993) https://doi.org/10.1021/la00032a025
  2. A. Búsci, J. Forcada, S. Gibanel, V. Heroguez, M. Fontanille, and Y. Gnanou, Macromolecules, 31, 2087 (1998) https://doi.org/10.1021/ma971434q
  3. J. S. Shin, J. M. Lee, J. H. Kim, K. Suzuki, M. Nomura, and I. W. Cheong, Macromol. Res., 14, 466 (2006) https://doi.org/10.1007/BF03219112
  4. M. Laus, M. Lelli, and A. Casagrande, Polymer, 37, 343 (1996) https://doi.org/10.1016/0032-3861(96)81108-6
  5. W. H. Li and H. D. H. Stöver, Macromolecules, 33, 4354 (2000) https://doi.org/10.1021/ma9920691
  6. E. C. C. Goh and H. D. H. Stöver, Macromolecules, 35, 9983 (2002) https://doi.org/10.1021/ma0211028
  7. S. Sosnowski, M. Gadzionowski, and S. Slomkowski, Macromolecules, 29, 4556 (1996) https://doi.org/10.1021/ma951542h
  8. K. C. Lee and S. Y. Lee, Macromol. Res., 15, 244 (2007) https://doi.org/10.1007/BF03218783
  9. W. H. Li and H. D. H Stöver, J. Polym. Sci. Part A: Polym. Chem., 37, 2899 (1999) https://doi.org/10.1002/(SICI)1099-0518(19990801)37:15<2899::AID-POLA23>3.0.CO;2-8
  10. W. H. Li, K. Li, and H. D. H. Stöver, J. Polym. Sci. Part A:Polym. Chem., 37, 2295 (1999) https://doi.org/10.1002/(SICI)1099-0518(19990715)37:14<2295::AID-POLA2>3.0.CO;2-J
  11. R. S. Frank, J. S. Downey, K. Yu, and H. D. H. Stöver, Macromolecules, 35, 2728 (2002) https://doi.org/10.1021/ma001927m
  12. D. Horak and P. Shapoval, J. Polym. Sci. Part A: Polym. Chem., 38, 3855 (2000) https://doi.org/10.1002/1099-0518(20001101)38:21<3855::AID-POLA20>3.0.CO;2-2
  13. S. H. Han, K. K. Park, and S. H. Lee, Macromol. Res., 16, 120 (2008) https://doi.org/10.1007/BF03218840
  14. W. Yang, J. Hu, L. Li, C. Wang, and S. Fu, Colloid Polym. Sci., 277, 446 (1999) https://doi.org/10.1007/s003960050407
  15. D. Qi, F. Bai, X. Yang, and W. Huang, J. Appl. Polym. Sci., 100, 1776 (2006) https://doi.org/10.1002/app.23059
  16. J. M. Jin, J. M. Lee, M. H. Ha, K. Lee, and S. Choe, Polymer, 48, 3107 (2007) https://doi.org/10.1016/j.polymer.2007.03.068
  17. F. Bai, X. Yang, R. Li, B. Huang, and W. Huang, Polymer, 47, 5775 (2006) https://doi.org/10.1016/j.polymer.2006.06.014
  18. A. S. Brar, A. Yadav, and S. Hooda, Eur. Polym. J., 38, 1683 (2002) https://doi.org/10.1016/S0014-3057(02)00030-7
  19. S. E. Shim, S. Yang, H. Choi, and S. Choe, J. Polym. Sci. Part A: Polym. Chem., 42, 835 (2004) https://doi.org/10.1002/pola.11028