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Correction of the Approximation Error
in the Time-Stepping Finite Element Method

Byung-taek Kim*, Byoung-hun Yu*, Myoung-hyun Choi’ and Ho-hyun Kim*

Abstract — This paper proposes a correction method for the error inherently created by time-step ap-
proximation in finite element analysis (FEA). For a simple RL and RLC linear circuit, the error in time-
step analysis is analytically investigated, and a correction method is proposed for a non-linear system
as well as a linear one. Then, for a practical inductor model, linear and non-linear time-step analyses
are performed and the calculation results are corrected by the proposed methods. The accuracy of the
corrected results is confirmed by comparing the electric input and output powers.
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1. Introduction

The finite element method (FEM) has become increas-
ingly popular in the analysis of electric machines, and there
is no doubt that the time-step FEM is a very powerful tool
for acquiring accurate solutions, particularly for non-linear
systems [1]. However, the method still possesses an error.
This error is composed of one within the FEM itself, and
another created in time-step approximation. This error is
casily found in practical FE-analysis as, for instance, the
total electric input power always differs from the total out-
put power including losses. This logical fallacy confuses
the calculation of the power factor, efficiency etc. [2].

In this paper, the error from time-step approximation in
the steady state of a linear system is examined using an
analytic approach. Through this examination, a correction
method obtaining the exact solution is proposed regardless
of the step size. Since most real systems are non-linear, a
new correction method is additionally suggested and tested
for non-linear RL/RLC systems. For each system, the input
and output powers are compared in order to prove the va-
lidity of the method.

2. Examination of Error in Time-Step
Calculation FORMAT

The differential term in voltage equation in (1) for an
RL circuit can be expanded by the Taylor series including
an error value E,; shown as (2), where the asterisk *
means the exact solution.
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When the step size At gets much smaller, the error E,y
becomes negligible, so the voltage equation is written as
(3) in time-step form with an approximate solution i(z).

i —t(t—Ar)
Ar 3

Therefore, to obtain accurate solutions, the step size
should be very small. However, in FEA consuming large
amounts of time for simulation, it is difficult to take a very
small size, so in most cases it depends on the experience of
engineers. In several past studies, the paper suggested by S.
L. Ho deals with a method of choice of step size, but it
focuses only on the current error reduction without consid-
ering the relation between the input and the output power
[2]3].

To show the error in time-step analysis, let’s assume a
linear RL circuit which has 1Q resistance and j10Q reac-
tance. The current drawn by 220V, 60Hz is analyzed by
using (3), and in the steady state the average of input (vi)
and output powers (i’r) are obtained respectively by using
(4) and (5).

V()= R-i(t)+ L

ty+T

P, = % D ()i At 4)

1=ty

to+T

S DR (5)

For a linear system, the exact solution can be calculated
by using the phasors in (6) and (7).
P, =V'T -cos§ (6)

W2
P,=R(I) (7)

In Table 1, the exact solution is compared with the ap-
proximate solutions with variances in step size. It shows
that the smaller the step size, the smaller the error becomes.
However, there is a great difference between the input and
the output power. In particular, the error of input power is
much bigger than that of output power in the RL circuit,
when comparing it with the exact solution.

This fallacy can be analytically investigated, as follows:
By reforming (3), the approximated current can be written
as (8).
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Table 1. Calculation Results for Various Step Sizes

Exact Solutions according to time step sizes
solution 1/25%) 1/(50f) 1/(100£)
P [W] 1057.6 771.3 626.0
479.2
Po  [W] 481.9 480.1 479.5
PF  [%] 9.9 222 16.1 13.0
I [A] 219 21.7 21.8 21.8
-0.8
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Fig. 1. Comparison of approximate solutions
in a linear RL circuit

The current i(?) obviously converges to a periodic func-
tion in steady state, so we can let i(?) in (8) as L,sin(wt+a)
which is of course an approximate solution. Then, the
equation (8) can be solved for 7,, and a. These are the func-
tions of L, v, R, and the step size Az, given by (9) and (10).

i A v(tA): ; +1(Lt —AY) .

I1,= {\/(R ‘At+ L~ L-cos(wAn))’ +(L-sin(wAr))’ }_1 At-¥, (9)

L -sin(wAt)
R-At+L—L-cos(wAr) (10)

The approximate solutions for various step sizes are ob-
tained by (9) and (10), and compared with the exact solu-
tion in Fig. 1. It shows that both the amplitude and phase
angle include the computation errors, consequently causing
a difference between the total input and output power. It
can also be seen that as the ratio X;/R increases, the phase
error increases but the amplitude error decreases in the RL
system.

In addition, using the same approach, the error in the
RLC circuit can be investigated. The current in time-step
form is written as (11) and (12). The amplitude and phase
of an approximate current is obtained by substituting 7,

a=—tan'(

sin(wt+a) for i() in (11), written as (13) and (14), where
the additional equations for symbols are given in the ap-
pendix.

For instance, the various approximate solutions of an
RLC circuit with R=1 Q, V=35volt-60Hz are obtained by
using (13) and (14), and the results are compared in Fig. 2.
It describes the fact that there are considerable errors in
both amplitude and phase. In particular, the time-stepped
result shows a serious deviation from the exact solution
when the system approaches a resonant point.
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Fig. 2. Comparison of approximate solutions
in a linear RLC circuit
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B, 4B
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3. Correction Of Time-step Error In FE-Analysis

3.1 Linear System

In practice, it is nearly impossible to obtain the exact
inductance of a magnetic system using an analytical
method because of its complex geometry and nonlinearity.
For that reason, the time-step FEM is widely used in analy-
sis of systems. As a result of FE-analysis, we obtain the
approximate current whose amplitude and phase angle is
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given in (9)-(10) or (13)-(14) for an RL/RLC system. It is
important to note that inductances of the equations are the
exact values which are as yet unknown. However, if 1,, and
a have already been obtained by time step analysis, the
exact inductance L can be calculated by rearranging (9) and
(13), as shown in (15), where the supplementary symbols
can be referred to in the appendix.
R-At-tan(-a)
sin{@- Ar) — (1 - cos{w- A?)) - tan(~a)

{forRL)

L= G(R-XO-cos(y0)+-A-t)~RvX0~sin(;/0) (15)
< c (for RLC)

Aot (sin(2y,)— G- cos(27,))

Since the exact L can be obtained from (15), the exact
current in a transient or a steady state is also calculated
using an analytic method. The validity of the correction is
easily proven with the results in Table 1. Assume that the
approximate currents in the table were obtained by time-
step analysis. Using (15), the exact L and current can be
obtained, so the power characteristics are corrected to the
exact values as shown in Table 2.

Table 2. Power Comparison Before and After Error Cor-
rection In a Linear RL System

In/output Solutions according to time step sizes
power 1/(256) 1/(506) 1/(100f)
i P [W] 1057.6 771.3 626.0
Before 5 1w 481.9 480.1 479.5
correction
PF [%] 22.1 16.1 13.0
Aft P IW] 47921
fter ,
correction o [W] 479.21
PF  [%] 9.9

3.2 Non-linear System

Most electric machines have magnetic non-linearity
caused by the saturation of a magnetic core. In a non-linear
system, the voltage equation is given as (16). Since the
relationship between flux linkage 2 and current is non-
linear, the equation (15) is not true for the system. In fact,
even if the property of A(i) is perfectly known, the non-
linear differential equation (16) cannot be directly solved
by an analytic approach [4].

Jali
v(t):R~i*(z)+—(;t(£—>) (16)

Thus, another correction with an indirect approach is
investigated for non-linear systems. First, suppose that we
obtain the approximate current i(#) by the time-step FEM.
It is actually a solution obtained by solving (17) coupled
with Maxwell’s field equations [5]. From (17), the X in the
RL system is written as (18) in which the first term in the
right side is calculated using the known i(#). Setting the
initial value A{0) (when there is no current) as zero, we are
able to determine the non-linear A~/ function which has a
piece-wise linear property.

R.l«(t)+’i(i(t)}_;”(i<$7At)>

" (for RL) a7
v(t) = . ;
R‘i(t)+ﬂl_(l).}~_it(_ly_~ﬁ+%§i(1)(fm RLC)

A(i(1))= (v - R-i)) Ar+ A(i(r - A1) (forRL)  (18)
Once the function A-i is known, we can again easily
solve the equation (17) with an arbitrary step size. In other
words, it is possible to calculate it with a very small step
size in a short time as it is no longer a field-coupled analysis
but is instead a simple circuit simulation. With such a small
step size, the error due to time-step method becomes negli-
gible and only the error due to the A-i approximation re-
mains. Therefore, the calculation accuracy gets much better.
In order to verify the proposed method, let’s assume a
simple magnetic system as shown in Fig. 3, which has a
resistance of 20 €, and a lamination stack length of 30 mm.
The number of turns is 750 and the core is a silicon steel
generally used in electric machines. With a sinusoidal volt-
age of 200V-60Hz, the time-stepped non-linear FE-analysis
is carried out with various time step sizes and the simulated
currents are depicted in Fig. 4. With each current, the mag-
netic characteristics are calculated by (18). Fig. 5 shows
the piece-wise linear A~/ characteristic obtained from a cur-
rent with 1/(25f) step size. Using the A-i characteristics, the
equation (17) is solved with a step size of 1/(1000f), where
the Newton-Raphson algorithm is used for convergence in
non-linear analysis [6]. As shown in Fig. 6, regardless of
step size, every waveform is moved to almost the same
point. This means that the corrected solutions are nearly an
exact solution, so the input power becomes identical with
the output power. ‘
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Fig. 3. Simple C-core inductor for simulation
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Fig. 4. Currents by time-step FEM in non-linear RL system
(before correction)
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Fig. 5. Approximated A-i characteristic
of non-linear RL system
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Fig. 6. Current correction of non-linear RL system

As an example for an RLC system, we assume the core
in Fig. 3 where the coil has 170 turns and a capacitor hav-

ing —j15 Q is connected with a voltage source of 25V-60Hz.

The currents obtained by FEA with variances in step sizes
are shown in Fig. 7. It shows that the simulated currents are
very different to one another, so it is very difficult to expect
the exact solution from the system. In Fig. 8, the currents
corrected by the proposed method are shown. Comparing
them with the results in Fig. 7, they are dramatically
moved to the same position, though showing a little differ-
ence near the peak due to the inaccuracy of the A-i model.
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Fig. 7. Currents by time-step FEM in non-lincar
RLC system (before correction)
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Fig. 8. Corrected currents of a non-linear RLC system

The power relationship between input and output is
compared in Table 3. It shows that the power differences
between the original results are greatly reduced and the
accuracy of the power factor is also improved by the pro-
posed method.

Table 3. Power Comparison Before and After Error Cor-
rection In a Linear RL System

In/output Solutions according to time step sizes
power Q259 1500 ooy 142000

P [W] 80.6 65.6 49.0 392

Before — p [w] 188 25.1 272 28.0
correction

PF  [%] 74.3 52.3 37.5 29.6

P, [W] 34.0 31.1 30.1 294

Afler —p w] 314 28.8 285 28.5
correction

PF  [%] 243 23.2 23.1 23.1

4. Conclusion

First, this paper deals with an estimation of the error
produced by time-step approximation in FEA, and pro-
poses new correction methods for linear and non-lingar
systems. It proves that the error in the linear case can be
climinated and the error in the non-linear case is dramati-
cally reduced by the proposed methods. Therefore, these
methods can be used efficiently to obtain accurate solutions
for an otherwise time-consuming FE-analysis problem. In
this study, application of the proposed method is limited to
a sinusoidal voltage input, but it can be also used for a non-
sinusoidal one.

Appendix

X, =4 +B, X, =4’ + B}

A, =1-cos{@-Ar) ,
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7, =tan™' {%} , G= tar{taxfl (%j - a]

L At
4 =R-X, ~cos(}/(,)+A—t~X02 ~cos(2y0)+E

B =R-X, ~sin(;/o)+£-X02 sin (27, )
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