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Study of Hydrodynamic-Magnetic-Thermal Coupling
in a Linear Induction MHD Pump

Fatima Zohra Kadid*, Said Drid** and Rachid Abdessemed*

Abstract — This article deals with the analysis of a coupling between stationary Maxwell’s equations,
the transient state Navier-Stokes and thermal equations. The resolution of these equations is obtained
by introducing the magnetic vector potential A , the vorticity §, the stream function ' and the tem-
perature T. The flux density, the electromagnetic thrust, the electric power density, the velocity, the
pressure and the temperature are graphically visualized. Also, the influence of the frequency is pre-

sented.
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1. Introduction

Magnetohydrodynamics (MHD) and its applications
are widespread, and can be found in nuclear reactors,
magnetohydrodynamic (MHD) generators, pumps, accel-
erators and blood flow measurements [1], [2]. MHD is a
theory that describes the interaction of an electrically con-
ducting fluid with magnetic fields. Effects from such in-
teractions can be observed in liquids and gases. The
pumping of liquid metal may use an electromagnetic de-
vice, which induces eddy currents in the metal. These in-
duced currents and their associated magnetic field gener-
ate a Lorentz force, the effect of which can be the pump-
ing of liquid metals. The advantage of these pumps which
ensure energy transformation is the absence of moving
parts. Linear induction MHD pumps are electromagnetic
devices that use the principle of induction motors to move
liquid metal by the action of a sliding field [3].

The magnetohydrodynamic problem is studied using
the finite element method for the electromagnetic problem
and the finite volume method for the hydrodynamic and
thermal problems.

The difficulty with the electromagnetic problem is
the presence of the convective term V AB due to the
movement of the fluid, where B is the magnetic induction
and V is the velocity [4-5]. However, in the hydrody-
namic study, the problem or difficulty to be solved nu-
merically is due to the incompressibility constraint given
by the continuity equation divV =0 which couples the

velocity V and the pressure p, and the choice of numeri-
cal method. In existing literature Many formulations to
solve the problem of incompressibility constraints in Na-
vier-Stokes equations can be found in existing literature.
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These include the pseudo-compressibility method, which
in turn includes the penalty method [6-7], although this
presents a problem with the choice of the penalty coeffi-
cient which must be carefully chosen in order to ensure
accuracy and convergence; the SIMPLE algorithm [8];
and the stream-vorticity formulation [9], [10]. After sim-
plifications of the Navier-Stokes equations, it is possible
to obtain the velocity and the pressure as several methods
are used, such as the finite element method [11], the
boundary element method [12], and the finite volume
method [8]. Consequently, in this paper we chose the
stream-vorticity formulation, the most used in hydrody-
namics problems in transient cases, and with the use of the
finite volume method where the principle of conservation
is imposed over each volume of control and therefore eas-
ier for comparison to the finite element method [&].

The goal of this paper is to compute the velocity, pres-
sure and temperature of the fluid in the channel of the
MHD pump. To do so, it is initially necessary to determine
the flux density then the induced currents, the electromag-
netic thrust and the thermal source which allow the veloc-
ity to be calculated, and the pressure and temperature at
any point of the channel. A study of the influence of fre-
quency on fluid flow and temperature is also performed.

2. Electromagnetic Problem

2.1 Mathematical model

Fig. 1 shows the scheme of the MHD pump. It has two
inductors which contain the coils, air gap and the external
area, while the channel contains the liquid metal. The
conducting fluid is assumed to be viscous and incom-
pressible.

For the calculation reported in the following, mercury
is considered as the fluid. The equations describing the
pumping process in the channel are Maxwell’s equations
such as:
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Fig. 1. Schematic view of the MHD pump
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where A is the magnetic vector potential, o is the electri-
cal conductivity, p the magnetic permeability, V is the
velocity of the fluid and J, the excitation current
density.

After developing the above equations in Cartesian co-

ordinates and in sinusoidal mode, the final integro-
differential system with the Dirichlet boundary condition

is:
1({8°4 &4 , a4
_;(§+a—yz—)+a(]WA+V§J_J” 2)
A=0 on oD 3)
The currents of the windings generate a traveling
magnetic field which produces a current in the liquid
metal. As a consequence, a Lorentz force acting on the
fluid is obtained.

The eddy currents inside the channel are computed by:

Jj= —G[a—A -Vx rotA) €))
ot
The thrusts are given by:
F =J,; xrotA %)

2.2 Finite element method

The system sdescribed in (2) and (3) is solved using
the finite element method. We apply the weak Galerkine
method to the equation (2) which consists to seek n pro-
jection functions @1,95 ..., @, such as:

e
o LAl (6)

+ j(pi(~0'ij+ . —O'VZ—Ade =0
%
Q

After evaluating the resulting integrals by parts over
the whole problem domain (Q) and then substituting the

appropriate boundary conditions, we obtain a set of simul-
taneous partial differential equations of the form [13], [14]:

[jalc]+ [ ]+ (a1, ]]14)=[F] 0]
with:
[C]: J-O-(/’i @;dQ

1
[a1,]= I— grad (p,)grad (p; a2
au
)= [or 0,22 o
3 ox

[F]=7, J}o,. o

The matrices [C], [M,] and [M,] are calculated con-
sidering the element matrices, appropriate shape functions
[4], [5] and [14]. The vector [F] accounts for the cur-
rentJ ., . The resulting equations are solved using the it-
erative method until convergence is reached. Once A is
obtained, we can compute the magnetic induction field by
usingB=rot A.

3. The Hydrodynamic and Thermal Problems

3.1. Navier-Stokes equations

The MHD flows of an incompressible, viscous and
electrically conducting fluid in a transient state condition
is governed by the Navier-Stokes equations [9]:

N wvv=—LyproavE (8)
ot P p
divV =0 )

where p the is the pressure of the fluid, o the kinemactic
viscosity of the fluid, Fthe electromagnetic thrust and p
the fluid density.

The development of the equation of the flow in Carte-
sian coordinates gives:

Ou Ou Ou 1 op o’u o) F,
—tU—Fu'—=—— V| S+ [+
ot Ox oy p ox ox® oy el
ou' ou' ou'  1op o’u' du') F,
—tUu—tu'——=—— V| o+ —— |+
ot Ox oy p Oy ox~ oy p (10)
qu g
ox Oy
The boundary conditions are such as:

u=u'=0 on 0D,

' 11
%:o,%:o on D, (h

The real difficulty is that the calculation of the velocity
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lies in the unknown pressure. To overcome this difficulty
is to relax the incompressibility constraint in an appropri-
ate way. Consequently, the elimination of pressure from
the equations leads to a vorticity-stream function [9-10].
The vorticity vector is defined by:
€ =rotV (12)
The stream function is given in 2D Cartesian coordi-
nates as:

(13)

'R
Where u and v’ are the components of the velocity V.
We eliminate the pressure from the equation (10) and
use the two new dependent variables £ and W to obtain

the following equation:
2 2 oF
a—54—14%“4'%:1/ 0 §+8 d +l y—an
ot Ox Oy a2 6y2 plox oy
(14)

After substituting equation (13) into equation (12) we
obtain an equation involving the new dependant variables

& and ¥ suchas:

2 2
v OV . (15)
o o
To determine the pressure, the resolution of an addi-
tional equation is necessary. The latter is obtained by dif-
ferentiating equation (8) and using the continuity equation
(9). This equation is referred as Poisson’s equation for

pressure:
2 2
Apzzp[a v a—"’] (16)

ox2 8y2
3.2 Thermal problem

The thermal phenomena are studied only in the chan-
nel of the MHD pump. As a result, the governing thermal
equation is given by:

o T(op) Dp
—+—|—=|p—=diviK grad T )+ 17
P o p[aT]th (K grad T)+p;  (17)

where p is the density of the fluid, C » the specific heat,

K the thermal conductivity, T the temperature and p,
the thermal source induced by eddy current such as:
J2
=— 18
rys 18

After developments in Cartesian coordinates, by re-
placing the source term p, and neglecting the term of

pressure is due to the low velocities obtained in the hy-
drodynamic study, we obtain:

Ps

2 2 *
6T_1{6 T.3d T}J,Ji 19)

£ 5 - 6x2 6y2 20
J ,* is the conjugate of J;.
The thermal boundary conditions are applied to the
channel (Fig. 2) as follows:
T=298°K on 0Dj.

and —81:0 on 0D,.
on

4. Numerical Method

For the fluid flow model, there is one control volume
surrounding each node (Fig. 2) and the differential equa-
tion (14) is integrated over each control volume using the
finite volume approach [8]:

(3Y)o

Fig. 2. Discretisation in fimite volume method
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The discretisation equation results in a series of dis-
crete algebraic equations that take the form:
ap &p = anp Enp + b @1
where @, terms are the active coefficients on &, and nb
implies summation over the neighboring nodes (those to
the West, W; East, E; South, S; and North, N) of P for
two-dimensional computations, and b is the source terms.
The code generated is based on an unstructured mesh-
generation. The nodes of the mesh for the coupling model
electromagnetic-hydrodynamic are the same in the channel.
At each time step, the electromagnetic and hydrodynamic
problems can be solved alternatively and iteratively until
convergence is reached.
We use the same steps for the thermal equation (19) as

for the hydrodynamic equation (14):
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with the source expression, the discretisation equation
would still look like equation (21), but the coefficients

would change. The new set is:
ay Tp =) a, T, +b (23)

}dx dy dt

t sw

5. Simulations and Results

The potential vector A is calculated for cach finite
element node by means of the finite element method. Hy-
drodynamic and thermal calculations supply, respectively,
the velocity, the pressure components and the temperature
which must be known at each integration point of the fi-
nite volume method.

For the coupling of the two methods F.EM-F.V.M, it
is necessary to ensure an adaptation of the grid mesh, i.c.
we must find the same nodes for the two different meth-
ods. The electromagnetic force density calculated by the
finite clement method is introduced in the hydrodynamic
equations which are solved using the finite volume
method to determine the velocity and the pressure of the
fluid in the channel. Also, the thermal source is calculated
for the thermal problem.

Fig. 3 represents the coupling of the three problems
(hydrodynamic-electromagnetic-thermal), and is divided
into the following three parts:
® finite element method computation in the sinusoidal

mode of the magnetic vector potential A by (2) and the

computation of the force density by (5);
® finite volume method computation of the velocity in

the transient state only in the channel of the MHD

pump by using the vorticity vector-stream function
cquation (14). Once the stream function is determined,
we can calculate the pressure at any point of the chan-

nel by the equation (16);
® finite volume method computation of the temperature

in the transient state only in the channel of the MHD

pump where the temperature is determined by the

equation (19).
Force density -
Hydrodynamic <:> Electromagnetic
Problem Velocity Problem

\\—vll
3

Y 4
MHD s
%% Thermal
o Problem

Fig. 3. The coupling scheme

For the electromagnetic problem the whole MHD
pump is meshed, but for the hydrodynamic problem only
the channel which contains the mercury liquid metal is
meshed. The iterations are repeated until the error is low.

As results Figs. 4 and 5 represent respectively the
magnetic induction and the distribution of the electromag-
netic thrust in the MHD pump (this thrust is the same as
that obtained by [3]).
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Fig. 4. The magnetic induction in the MHD pump
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Fig. 5. The electromagnetic thrust
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Fig. 6. Velocity in the middle of the channel
for several frequencies
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Fig. 6 represents the variation of the velocity of the
pump for several frequencies. It is shown that the velocity
increases as the frequency increases and a steady state is
obtained after approximately two seconds.

Fig. 7 shows the pressure variations for several fre-
quencies. It is found that the pressure increases as the fre-
quency increases. It is important to notice that the ampli-
tudes of the pressure oscillations increase with increasing
frequency. Moreover, the “shock” values become more
significant with a shorter transient state.
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Fig. 7. Pressure in the middle of the channel
for several frequencies

Fig. 8 shows the electric power density in the channel.
The maximum induced power reachesg10®w /m?. The
pace obtained is directly related to that of the eddy current

density. This characteristic of the heat source is used in the
numerical calculation of the temperature.
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Fig. 8. The electric power density in the channel

Fig. 9 shows the distribution of the temperature for dif-
ferent frequencies. We denote the temperature increase

with the frequency. The maximum temperature for £ = 50
Hz reaches 372 °K.
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Fig. 9. Temperature in the channel for different frequencies

The following table gives the proprieties of the mer-
cury:

Table 1. Parameters of the Mercury

Parameter Value

Electrical conductivity (&) 1.0610° (Q. m)—l

Mass density (p) 13.6 10% (kg/m®)

Kinematic viscosity (V) 0.11 1076 m2 /s
138(J/Kg°K)

8.4 (W/m°K)

Specific heat «,)
Thermal conductivity (K)

6. Conclusion

The solution of the magnetohydrodynamic problem is
obtained by using the A, €,y and T formulations and the

coupling of the 2D finite element-finite volume methods.
We have disclosed the presence of fast transients and the
oscillatory behavior in both velocity and pressure.

The obtained results confirm an influence of the fre-
quency on the velocity and pressure distribution in the
investigated flow [15] and [16].

A visualisation of the temperature curve leads to an
appreciation of the effect of frequency on temperature in
the channel. Furthermore, the obtained temperature results
are identical to the results of [17].
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