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Analysis of a Gas Circuit Breaker Using the Fast Moving
Least Square Reproducing Kernel Method

Chany Lee*, Do Wan Kim**, Sang-Hun Park***,
Hong-Kyu Kim*** and Hyun-Kyo Jung*

Abstract — In this paper, the arc region of a gas circuit breaker (GCB) is analyzed using the fast mov-
ing least square reproducing kernel method (FMLSRKM) which can simultaneously calculate an ap-
proximated solution and its derivatives. For this problem, an axisymmetric and inhomogeneous formu-
lation of the FMLSRKM is used and applied. The field distribution obtained by the FMLSRKM is
compared to that of the finite element method. Then, a whole breaking period of a GCB is simulated,
including analysis of the arc gas flow by finite volume fluid in the cell, and the electric field of the arc

region using the FMLSRKM.
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1. Introduction

To calculate the breaking performance of a gas circuit
breaker (GCB), the electric field in an arc region of a GCB
should be analyzed [1]. It is an inhomogeneous problem
due to the fact irregular distributions of pressure and tem-
perature in the arc region cause inhomogeneous electric
conductivity [2]. Moreover, because of the geometry of the
GCB and the heavy load of a 3-dimensional calculation, it
needs to be treated as an axisymmetric problem [1], [2].

The fast moving least square reproducing kernel
method (FMLSRKM) is a kind of meshfree method studied
by many researchers [3]-[10]. The FMLSRKM is able to
solve a variety of problems, including Poisson, stationary
incompressible Stokes, and many electromagnetic prob-
lems [3], [4]. As with other meshfree methods, such as
smoothed particle hydrodynamics (SPH) [5], the element
free Galerkin method (EFG) [6], the moving least square
reproducing kernel method (MLSRKM) [7], and so on [3],
[8], [9], FMLSRKM does not require a mesh generation
process. Moreover, the refinement scheme of a meshfree
method is simpler than that of a finite element method
(FEM) as all that is required is for additional nodes to be
placed in high-error regions [10].

For accurate approximation of meshfree methods, a
high order basis function is required. Furthermore, in cases
using a point collocation scheme as a meshfree method,
higher order derivatives are needed. Consequently, the cal-
culation of an approximated solution and its derivatives is
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unavoidable, but obtaining these derivatives makes meshfree
methods computationally heavy. However, the FMLSRKM
not only gives an approximated solution, but also high or-
der approximated derivatives up to the order of the basis
polynomials, simultaneously [3]. Therefore, this method is
adopted in this work for fast calculation.

In this paper, the FMLSRKM point collocation formu-
lation for an axisymmetric and inhomogeneous problem is
shown. In addition, we briefly explain a way to analyze an
arc gas flow in a GCB. Then, simulation results are also
represented.

2. Method

2.1 FMLSRKM

The FMLSRKM is able to produce an approximated so-
lution »+ at xnear X can be determined using polyno-
mial bases, like

wh (%, %) = Pm("f)-a(n 0]

where, P, is the complete basis polynomial vector up to
order m, a(X) is the unknown coefficient vector for the

local area of X [4]-[6]. In this paper, x=[r z]" because the
problem is axisymmetric, and p is the dilation parameter,

which represents the region of influence of #’(x,X). In
order to obtain the coefficient vector a(xX), the moving
least square scheme is applied. Some mathematics (de-
tailed in [4], [5]) lead to
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where, NP is the number of nodes in the local area, and
_ X; —X
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is called the window function, where
1_ !
B(x) = (={x]})’, when I.IXH<1, t>0
0, otherwise.

2.2 Analysis of Electric Field on the Arc Region

As mentioned above, the arc region of a GCB can be
treated as an axisymmetric problem with inhomogeneous
electric conductivity [1], [2]. Hence, development of the
FMLSRKM formulation for this problem is required. In a
GCB, an arc is generated in the arc region between two
clectrodes, such as in Fig. 1. The arc region Q is shown
in the bottom left of Fig. 1. This arc region is governed by
Ohm’s law and the equation of continuity like

J=0cE, (5)

VeJ=0, (6)

where, J is the electric current density, E is the electric

field intensity, and o is the electric conductivity. So, the
electric potential ¢ can be expressed as

Ve(oVg)=0 in Q, @)
and boundary conditions are given such as
p=g. on I'p (8)
0
o¢ =h, on I'y 9
on

[1]-[3]. Dirichlet boundary conditions are applied at the inter-
faces between the electrodes and the arc region denoted as

the bottom right of Fig.1, and its values are setto ¢, =1V,

@, = OV which are given to simplify the boundary value

problem of the arc region. In addition, the Neumann
boundary condition is applied to the upper interface of the
arc region.

Rotational axis

"

Fig. 1. A certain status of a gas circuit breaker. The area in
the oval dotted circle is the arc region (bottom left)
and its boundary condition (bottom right).

The electric conductivity of SF, gas is affected by cir-
cumstances such as temperature and pressure. Even though
the state equation for ideal gas explains the relationship of
temperature, pressure P, density p, (not to be confused

with dilation parameter), and internal energy i such that
P=(r-Dpi (10)
i=e—(ul" +|V})/2, (11)
it does not predict relationships accurately in high tempera-
ture plasma [2]. So, after density and internal energy are
calculated, we used data from [13] to obtain the conductivity
of SF¢ gas as well as temperature and pressure.

For the axisymmetric and inhomogeneous problem, dif-
ferentiation of the electric conductivity is not vanished, so
(7) is rewritten as

2 2
Ea—¢+a%+a%+a—g%+ﬁ—ga—(lﬁ=0. (12)
r or or 0z~ Or or 0z Oz

Implementation of the FMLSRKM is possible in two
ways, such as the Galerkin method and the point colloca-
tion scheme. Of the two, we chose the point collocation
scheme because the efficiency of the FMLSRKM in the
collocation method is better than that of the Galerkin
method [4].All nodes in the analysis domain, including
interior and boundary nodes,

gx)= 2 ¢,¥"(x,) (13)
X, eA
should be satisfied, and for the nodes in interior node set
A, the point collocation formulation of (12) is
2 BLoG )T ) + I x )+ 5 (x,) /1))

X, eA

+0,(x )P (x,)+ o, (x )P (x,)]=0 (14)

forall x;, € A,

where

oo Jdo
O-r(XJ):__' s O-Z(XJ):_

T Ix=x, Z |x=x,
and, for the nodes in boundary node sets A; and A, are
also point collocated as
¢, =g(x;) forall x; € Ay (16)
> 4, (PEx,), P (x, D) em(x, ) =0
xyel (17)
forallx, e A,
where, A=A; UA, UA,, n(x;) is the outward unit

normal vector at x; € A,, and ¥Y(x,) is « -th shape

; (15)

function which means « -th derivative of the shape function
[3], [10]. As seen in (14), for the point collocation method,
high-order derivatives up to the order of the governing
equation are needed. However, evaluation of the deriva-
tives of the shape function and solution is, numerically, a
heavy burden. Consequently, in this paper, we used the
FMLSRKM for analysis of an electric field on the arc re-
gion because one of its advantages is its ability to calculate
derivatives of the shape function, simultaneously [3], [4].
Then, « -th derivative of the approximated solution in the
FMLSRKM method can be represented using the shape
function as
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Deg(x) = lim D*¢" (x,X)
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where, e, =(1,0)7 or (0,1)’, @=(a,a),and D* =925=.
Using the FMLSRKM, it is also convenient to calculate the

electric field E because derivatives with respect to r and
z are obtained as well as the electric potential.

2.3 Analysis of Arc Gas Flow

Euler’s equations govern a flow of compressible and
inviscid fluid [12]. Using this governing equation, in this
paper the arc gas flow is analyzed by finite volume fluid in
the cell (FVFLIC) in an axisymmetric coordinate. Accord-
ing to Euler’s equations, mass, momentum, and energy are
conserved as

e , Apaur)  0pv) _ (19)
ot ror oz
2
Op,u n O(pgu’r) n O(peuv) __ o(pr) ’ (20)
ot ror oz ror
2
v, Opgnr)  Apev) | op) @1)
ot ror 1574 oz
8_E+ O(pguEr) n a(ngE) __ O(pur) _ o(pv) +S.,(22)
ot ror oz ror oz

where, p, is the density of gas, p is pressure, E is the

total energy, S. is the energy source, # andv are the
vector components of » and z, respectively [2]. Energy
source S. can be acquired as

Se = Sohm _Urad > (23)
where, U,. is the radiation transport. S, is the ochmic
heating source and expressed as

Sum =0 | E*. (24)

3. Result

An example is shown in Fig. 2. Because there very little
analytic solutions for problems on an arc region, the
FMLSRKM solution in this example is compared to that of
the finite element method (FEM) which is popular as a
means of solving various kinds of differential equations.
Fig. 2(a) shows the distribution of electric conductivity and,
as it shows, inhomogeneity is not negligible. Mesh data for
the FEM and node set for the FMLSRKM are represented
in Figs. 2(b) and (c), respectively. For comparison of the
two methods, nodes in Fig. 2(b) have identical positions
with nodes in Fig. 2(c). In Fig. 3, a comparison of the two
methods is shown, and Figs. 3(a) and (b) show the electric
potentials acquired by the FMLSRKM and FEM, respec-
tively. They show similar results, and it can be seen that the
potentials furthest from the axis are distorted due to the

conductivity in Fig. 2(a). Figs. 3(c) and (d) are electric
field intensities from the FMLSRKM and the FEM, respec-
tively. Although the electric field intensities of the
FMLSRKM and the FEM in the area furthest from the axis
show little difference, directions and trends of the two re-
sults are similar. Fig. 4. shows an example of gas flow in
the GCB, and as can be seen, the gas from the cylinder
goes to both sides of the arc region.
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Fig. 2. An example of an arc region analysis. (a) Inhomo-
geneous electric conductivity is distributed, and
Dirichlet boundary conditions are given on sides of
the analysis domain. (b) and (c) are mesh data and
the node set of the arc region of the finite element
method. For comparison of these two methods,
nodes in (c) have the same positions of mesh data
as in (b). All numbers on axes are in meters.
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Fig. 3. An example of analysis of electric potential on the
arc region. (a) and (b) are potential distributions
obtained by the FMLSRKM and FEM, respectively.
(c) and (d) are electric field intensities by the
FMLSRKM and FEM, respectively. Potential dis-
tributions and field intensities from the two meth-
ods are similar. All numbers on axes are in meters.
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4. Conclusion

Point collocation FMLSRKM for an axisymmetric and

inhomogeneous problem is implemented to analyze the
electric field of the arc region. In addition to this analysis,
arc gas flow estimation described by Euler’s equations was
implemented using the FVFLIC method. Then, a whole
breaking period of GCB is performed by computer simula-
tion. Comparing them to the FEM results of an electric
field analysis of the arc region, it is verified that the
FMLSRKM can produce an acceptable approximation.
Consequently, the FMLSRK method will be a good tool to
solve axisymmetric and inhomogeneous problems.

(5]

(6]

Fig. 4. An example of gas flow in a GCB
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