DOI QR코드

DOI QR Code

Different Expressions of HIF-$1\alpha$, Bcl-2 and Baxin DU145 Prostate Cancer Cells Transplanted in Nude Mouse between X-Ray and Neutron Irradiation

누드마우스에 주입된 DU-145 전립샘암에서 엑스선과 중성자선에 의한 HIF-$1\alpha$, Bcl-2, Bax 발현의 차이

  • Kong, Moon-Kyoo (Departments of Radiation Oncology, Kyung Hee University School of Medicine) ;
  • Kang, Jin-Oh (Departments of Radiation Oncology, Kyung Hee University School of Medicine) ;
  • Kim, Sang-Ki (Departments of Radiation Oncology, Kyung Hee University School of Medicine) ;
  • Shin, Dong-Oh (Departments of Radiation Oncology, Kyung Hee University School of Medicine) ;
  • Park, Seo-Hyun (Departments of Radiation Oncology, Kyung Hee University School of Medicine) ;
  • Kim, Chang-Ju (Departments of Physiology, Kyung Hee University School of Medicine) ;
  • Chang, Hyun-Kyung (Departments of Physiology, Kyung Hee University School of Medicine)
  • 공문규 (경희대학교 의과대학 방사선종양학교실) ;
  • 강진오 (경희대학교 의과대학 방사선종양학교실) ;
  • 김상기 (경희대학교 의과대학 방사선종양학교실) ;
  • 신동오 (경희대학교 의과대학 방사선종양학교실) ;
  • 박서현 (경희대학교 의과대학 방사선종양학교실) ;
  • 김창주 (경희대학교 의과대학 생리학교실) ;
  • 장현경 (경희대학교 의과대학 생리학교실)
  • Received : 2009.08.20
  • Accepted : 2009.11.12
  • Published : 2009.12.31

Abstract

Purpose: To investigate the radiobiologic effects of neutron and X-ray irradiation on DU-145 prostate carcinoma cells by identifying the differences of HIF-$1\alpha$ expression and apoptosis. Materials and Methods: Nude mice were injected with the human prostate cancer cell line, DU-145, and then irradiated with 2 Gy and 10 Gy X-rays, or 0.6 Gy and 3.3 Gy neutrons, respectively. The mice were sacrificed at 24 hours and 120 hours after irradiation. The expression levels of HIF-$1\alpha$, Bcl-2 and Bax were compared with immunohistochemical staining and western blotting. The apoptotic indexes were compared with the Terminal deoxynucleotidyl biotin-dUTP nick and labeling (TUNEL) assay. Results: At day 1, HIF-$1\alpha$ and Bcl-2 expression decreased, while Bax expression and the number of TUNEL positive cells increased in neutron irradiated groups for the control and X-ray irradiated groups. The Bcl-2/Bax ratio was significantly lower in the neutron irradiated groups regardless of dose (p=0.001). The same pattern of the differences in the expressions of the HIF-$1\alpha$, Bcl-2, Bax, Bcl-2/Bax ratio, and apoptotic indexes were indentified at day 5. HIF-$1\alpha$ expression was related with Bcl-2 (p=0.031), Bax (p=0.037) expressions and the apoptotic indexes (p=0.016) at day 5. Conclusion: Neutron irradiation showed a decrease in HIF-$1\alpha$, Bcl-2 expression, and Bcl-2/Bax ratio, but increased Bax expression regardless of dose. This study suggests that the differences radiobiological responses between photon and neutron irradiation may be related to different HIF-$1\alpha$ expression and subsequent apoptotic protein expressions.

목 적: 전립샘암 세포주 DU 145에서 엑스선과 중성자선에 의한 HIF-$1\alpha$와 아포프토시스 발현의 차이를 비교함으로써 엑스선과 중성자선의 방사선생물학적 차이의 기전을 알아보고자 한다. 대상 및 방법: 누드 마우스에 DU 145 전립샘암 세포주를 주입한 후 2 Gy 엑스선, 10 Gy 엑스선, 0.6 Gy 중성자선, 3.3 Gy 중성자선을 각각 조사했다. 엑스선을 조사한 군과 중성자선을 조사한 군에서 HIF-$1\alpha$, Bcl-2, Bax, 아포프토시스 발현 정도를 면역조직화학 염색과 western blotting을 이용하여 비교하였다. 아포토시스의 정도는 terminal deoxynucleotidyl biotin-dUTP nick end labeling (TUNEL) 염색을 이용하여 비교하였다. 결 과: 방사선 조사 1일째, X선을 조사한 군과 비교했을 때, 중성자선을 조사한 군에서 HIF-$1\alpha$와 Bcl-2의 발현은 감소하였고, Bax와 아포프토시스 세포의 수는 증가하였다. Bcl-2/Bax 비는 중성자선을 조사한 군에서 의미 있게 감소하였다. 이러한 HIF-$1\alpha$, Bcl-2, Bax, Bcl-2/Bax 비, 아포프토시스 발현의 차이는 방사선 조사 5일째에도 동일하게 유지되어 나타났다. 또한, HIF-$1\alpha$ 발현은 방사선 조사 5일째 Bcl-2 (p=0.031), Bax (p=0.037), TUNEL (p=0.016) 발현과 연관성을 보였다. 결 론: 중성자선 조사한 경우 엑스선에 비해 HIF-$1\alpha$와 Bcl-2 발현, Bcl-2/Bax 비가 감소하고, Bax 발현은 증가하였다. 중성자선 치료의 광자선과 다른 방사선생물학적인 반응은 HIF-$1\alpha$와 그로 인한 아포프토시스 관련 단백질 발현의 차이와 연관성이 있을 것으로 생각한다.

Keywords

References

  1. Halperin EC. Particle therapy and treatment of cancer. Lancet Oncol 2006;7:676-685 https://doi.org/10.1016/S1470-2045(06)70795-1
  2. Wambersie A, Hendry J, Gueulette J, Gahbauer R, Potter R, Gregoire V. Radiobiological rationale and patient selection for high-LET radiation in cancer therapy. Radiother Oncol 2004;73 Suppl 2:S1-14
  3. Forman JD, Yudelev M, Bolton S, Tekyi-Mensah S, Maughan R. Fast neutron irradiation for prostate cancer. Cancer Metastasis Rev 2002;21:131-135 https://doi.org/10.1023/A:1020805222151
  4. Russell KJ, Caplan RJ, Laramore GE, et al. Photon versus fast neutron external beam radiotherapy in the treatment of locally advanced prostate cancer: results of a randomized prospective trial. Int J Radiat Oncol Biol Phys 1994;28:47-54 https://doi.org/10.1016/0360-3016(94)90140-6
  5. Hall EJ, Giaccia AJ. Radiobiology for the radiologist. 6th ed. Philadelphia: Lippincott Williams & Wilkins, 2006:109
  6. Zhong H, Semenza GL, Simons JW, De Marzo AM. Up-regulation of hypoxia-inducible factor 1alpha is an early event in prostate carcinogenesis. Cancer Detect Prev 2004;28:88-93 https://doi.org/10.1016/j.cdp.2003.12.009
  7. Piret JP, Mottet D, Raes M, Michiels C. Is HIF-1alpha a pro- or an anti-apoptotic protein? Biochem Pharmacol 2002;64:889-892 https://doi.org/10.1016/S0006-2952(02)01155-3
  8. Strowbridge A, Wall N, Aref A, et al. Neutron radiation induces the modulation of BCL-2 and BAX protein resulting in apoptosis in a chemotherapy resistant intermediate grade non-Hodgkin's lymphoma cell line. Proc Am Soc Clin Oncol 2000;19:abstr 2601
  9. Eom KY, Wu HG, Park HJ, et al. Evaluation of biological characteristics of neutron beam generated from MC50 cyclotron. J Korean Soc Ther Radiol Oncol 2006;24:280-284
  10. Lee HJ, Kim JS, Moon C, Kim JC, Jo SK, Kim SH. Relative biological effectiveness of fast neutrons in a multiorgan assay for apoptosis in mouse. Environ Toxicol 2008;23:233-239 https://doi.org/10.1002/tox.20328
  11. Chan N, Milosevic M, Bristow RG. Tumor hypoxia, DNA repair and prostate cancer progression: new targets and new therapies. Future Oncol 2007;3:329-341 https://doi.org/10.2217/14796694.3.3.329
  12. Anastasiadis AG, Stisser BC, Ghafar MA, Burchardt M, Buttyan R. Tumor hypoxia and the progression of prostate cancer. Curr Urol Rep 2002;3:222-228 https://doi.org/10.1007/s11934-002-0068-6
  13. Semenza GL. Angiogenesis in ischemic and neoplastic disorders. Annu Rev Med 2003;54:17-28 https://doi.org/10.1146/annurev.med.54.101601.152418
  14. Moeller BJ, Richardson RA, Dewhirst MW. Hypoxia and radiotherapy: opportunities for improved outcomes in cancer treatment. Cancer Metastasis Rev 2007;26:241-248 https://doi.org/10.1007/s10555-007-9056-0
  15. Moeller BJ, Dreher MR, Rabbani ZN, et al. Pleiotropic effects of HIF-1 blockade on tumor radiosensitivity. Cancer Cell 2005;8:99-110 https://doi.org/10.1016/j.ccr.2005.06.016
  16. Moeller BJ, Cao Y, Li CY, Dewhirst MW. Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors:role of reoxygenation, free radicals, and stress granules. Cancer Cell 2004;5:429-441 https://doi.org/10.1016/S1535-6108(04)00115-1
  17. Holl V, Coelho D, Weltin D, Dufour P, Gueulette J, Bischoff P. Ex vivo determination of the effect of whole-body exposure to fast neutrons on murine spleen cell viability and apoptosis. Radiat Res 2000;154:301-306 https://doi.org/10.1667/0033-7587(2000)154[0301:EVDOTE]2.0.CO;2
  18. Vral A, Cornelissen M, Thierens H, et al. Apoptosis induced by fast neutrons versus 60Co gamma-rays in human peripheral blood lymphocytes. Int J Radiat Biol 1998;73:289-295 https://doi.org/10.1080/095530098142383
  19. Meijer AE, Kronqvist US, Lewensohn R, Harms-Ringdahl M. RBE for the induction of apoptosis in human peripheral lymphocytes exposed in vitro to high-LET radiation generated by accelerated nitrogen ions. Int J Radiat Biol 1998;73:169-177 https://doi.org/10.1080/095530098142554
  20. Wang LP, Liang K, Shen Y, Yin WB, Hans G, Zeng YJ. Neutron-induced apoptosis of HR8348 cells in vitro. World J Gastroenterol 2001;7:435-439 https://doi.org/10.3748/wjg.v7.i3.435
  21. Kyprianou N, King ED, Bradbury D, Rhee JG. Bcl-2 over-expression delays radiation-induced apoptosis without affecting the clonogenic survival of human prostate cancer cells. Int J Cancer 1997;70:341-348 https://doi.org/10.1002/(SICI)1097-0215(19970127)70:3<341::AID-IJC16>3.0.CO;2-I
  22. Szostak MJ, Kaur P, Amin P, Jacobs SC, Kyprianou N. Apoptosis and bcl-2 expression in prostate cancer: significance in clinical outcome after brachytherapy. J Urol 2001;165:2126-2130 https://doi.org/10.1016/S0022-5347(05)66306-9
  23. Mu Z, Hachem P, Pollack A. Antisense Bcl-2 sensitizes prostate cancer cells to radiation. Prostate 2005;65:331-340 https://doi.org/10.1002/pros.20303
  24. Mackey TJ, Borkowski A, Amin P, Jacobs SC, Kyprianou N. bcl-2/bax ratio as a predictive marker for therapeutic response to radiotherapy in patients with prostate cancer. Urology 1998;52:1085-1090 https://doi.org/10.1016/S0090-4295(98)00360-4
  25. Khor LY, Moughan J, Al-Saleem T, et al. Bcl-2 and Bax expression predict prostate cancer outcome in men treated with androgen deprivation and radiotherapy on radiation therapy oncology group protocol 92-02. Clin Cancer Res 2007;13:3585-3590 https://doi.org/10.1158/1078-0432.CCR-06-2972
  26. Khor LY, Desilvio M, Li R, et al. Bcl-2 and bax expression and prostate cancer outcome in men treated with radiotherapy in Radiation Therapy Oncology Group protocol 86-10. Int J Radiat Oncol Biol Phys 2006;66:25-30 https://doi.org/10.1016/j.ijrobp.2006.03.056