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Abstract

In this work, the structural response of thin-walled composite beams with pretwist angle is investigated by
using a mixed beam approach that combines the stiffness and flexibility methods in a unified manner. The
Reissner’s semi-complimentary energy functional is used to derive the stiffness matrix that approximates
the beam in an Euler—Bernoulli level for extension and bending and Vlasov level for torsion. The bending
and torsion-related warpings induced by the pretwist effects are derived in a closed form. The developed
theory is validated with available literature and detailed finite element structural analysis results using the
MSC/NASTRAN. Pretwisted composite beams with rectangular solid and thin-walled box sections are il-
lustrated to validate the current approach. Acceptable correlation has been achieved for cases considered in
this study. The effects of pretwist and fiber orientation angles on the static behavior of pretwisted composite
beams are also studied.
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1. Introduction

During the past couple of decades, pretwisted blades have attracted a lot of atten-
tion especially for helicopters, propellers, tilt rotors, and wind turbine applications.
In a structural point of view, the pretwist affects not only on the torsional property
but also on the bending rigidity. Besides the direct effect, the pretwist introduces
a coupling between extension and torsion from a geometric origin, even for blades
with isotropic materials. For the composite materials case, there will be an addi-
tional coupling between bending and torsion, or between extension and torsion,
depending upon the layup geometry used in the structure. It is apparent that these
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structural couplings make the analysis more involved than that without the pretwist
effect, especially with composite materials.

Rosen [1] presented an extensive review covering statics, dynamics, and stabil-
ity aspects of pretwisted beams. It is suggested that the appropriate treatment of
sectional warpings (e.g., torsion warping) is viable for refined structural analysis
of pretwisted blades. In addition to the torsion warpings, bending-related warpings
can play significant roles in the structural response of thin-walled composite blades;
thus, these warpings should be taken into account whenever they are relevant. De-
spite the considerable research activities undertaken so far [2—4], as pointed out
by Yu [5], there remains still a lack of published results with which to compare
for pretwisted composite beams. In other words, there is a strong need to provide
benchmark results in the relevant fields and also fundamental information on spe-
cific subjects inherent in the modeling of pretwisted composite beams.

In the present work, a mixed-based approach is adopted for the structural re-
sponse of thin-walled composite beams with built-in twist. The analytical model
includes the effects of elastic couplings, shell wall thickness, torsion warping,
and warping restraints. The bending and torsion-related warpings induced by the
pretwist angles are derived in a closed form in the beam formulation. An extensive
validation study is carried out to correlate the current analysis with available litera-
ture and also with detailed finite element structural analysis results. The effects of
pretwist and fiber orientation angles on the static behavior of thin-walled composite
beams are addressed in this study.

2. Formulation

Figure 1 shows the geometry and coordinate systems of a pretwisted beam. The
pretwist effect is represented by a rotation S(x) which is assumed as uniform
(dB/dx = k1) along the beam span. The pretwist angle at any spanwise location
x is given by:

B(x)=pr-x/l, (1)

where Bt is pretwist angle at the tip and / is the length of a beam. Several sets
of coordinate axes are employed to describe the motion. The first system is the
(x,y,z) system used to define the reference beam axis. The second system is the
(x, n, ¢) system where (7, ¢) are the principal axes of the beam cross-section. The
two coordinate axes are of the relation:

X 1 0 0 X
[y]=|:0 cos B —sin,BiHn}. 2)
Z 0 sinf cospB z

Finally, a curvilinear coordinate system (x, s, n) is defined for the section, where s
is the contour coordinate measured along the middle surface of the shell wall and
n is normal to the contour coordinate. The global deformations of the beam are
(U, V, W) along the x, y and z axes, respectively, and ¢ is the elastic twist. The
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Figure 1. Geometry and coordinate systems of a pretwisted blade.

local shell deformations are (u, v, v,) along the x, s and n axes, respectively, and
they are expressed as:

u=u’+nyy,
v =00+ ni, (3)
vn:v,(l),

where the superscript 0 denotes values defined at the mid-plane of the shell wall and
¥y, ¥y represent rotations about the s- and x-axes, respectively. The shell mid-plane
displacements are obtained via beam displacements and rotations from a geometric
consideration (see Fig. 1):

v =Vys+ Wz +ro,

v =Vzs—Wys—qo, “)

Ws = ¢,
where r and g are the coordinates of an arbitrary point on the shell wall in the (n, s)
coordinate system, respectively, and the comma denotes the differentiation with
respect to the coordinate. The strain—displacement and curvature—displacement re-

lations for the thin shell segment are given by [6]:
0

Exx Uy

{ Ess } = Vzo,s ) (5)
Yxs u?v + ng
Kxx _Ur(l),xx

{ Kys } = —vS,” . (6)
Kxs 200

n,xs
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The membrane shear strain y,; can be written from the beam kinematic relation
and also from (4) and (5),

Ves =NsVan T8 sVxe = ”f)s +nsVx+CsWy+rd,. @)

Assuming the hoop stress flow N in the shell wall of the section is negligibly
small and introducing a semi-inverted form of constitutive relations, one can obtain
the following equations [7]:

Ny« Che Chi Cn¢ Cn}/ Che Exx
M Chi Coni Cm¢ Cmy Cinr Kxx
M, ¢ = sz) Cmqb Cqb(b Cd)y C¢r Kxs (> (8)
Vs _Cny _Cmy _C¢y ny Cyr Ny
Kss —Chr —Cur —Cyr Cyr Crr M

where the coefficients C;; can be found in Jung et al. [8]. As is expressed in (8),
the shear flow and hoop moment resultants Ny, M, are treated as unknowns along
with the shell strain measures: &y, Kxx, Kxs. These Nyg, Mg will be determined by
considering the equilibrium equations of the shell wall.

By equating the membrane shear strain y,s defined respectively in (7) and (8) and
integrating from O to s, one obtains the first approximation to the axial deformation
ul as:

u®=U + (ncos B — ¢ sinB)By + (sin B+ ¢ cos B)B; + Lvil{q}, ®

where By, B, are the cross-section rotations, ¥; denote the cross-section warping
functions subjected to constraint conditions for a closed thin-walled section as:
55 ¥ ds = 0. The generalized beam deformation vector {g} appeared in (8) is de-
fined as:

{@)=1LUx Byx Box ¢x ¢axl’ (10)

By substituting (9) into (4) and (5), the strain—displacement relations are expressed
as a function of the beam displacement derivatives as:

exx =Ux + (nsin + ¢ cos B) By, x + (—ncos B+ ¢ sinf) B
+ ki ¢ — S¥i ) 1{q),
Kxx = —(Lscos B+ nssin )z x + (L ssinf —n,5cos B)By x + g xx,
Kxs =20 x,
where &y, Kxx, Kxs are the membrane and thickness shell strain measures, respec-
tively, and k is the rate of pretwist.

The stiffness matrix relating beam forces to beam displacements can be obtained
by using a variational statement given by,

(11)

I
8/ %{CDR + Vs Nxs + ks Mg} ds dx =0, (12)
0
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where [ is the length of the blade and @ is a modified form of the Reissner func-
tional which is defined as:

1
dr = E(Aneg)zcx + 2AncKxxExx + 2An¢sz<9xx + 2Any Nysexx +2An Mysexx

+ AmKK)%x + 2Am¢Kxxsz + 2AmnyxNxs +2Apmckxx Mg + A(M)K)%s
+ 2A¢>nysNxs + 2A¢thsMss + Axn)/xzn - Any)%s
—2Ayc NysMys — A MZ). (13)

Integrating (12) by parts with x and using (4) and (5) result in the equilibrium
equations for an element of the shell wall,

Nxx,x + Nxs,s = 0»
Nysx =0,

Mxx,x + st,s == O,
My + Mg s =0.

(14)

The first two equations in (14) indicate that N, consists of a constant part and a
part that depends on the s-integral of Ny, . Also, it is found from the third and
fourth equations that M, has a constant part, a part that varies linearly with s and
a part that depends on the s-integral of M, . Hence, one can write:

N

Nys = N,(g)s _/ Ny x ds,

. 0 s (15)

Mg = Mss + yMsys + ZMSZS - / My ds,

0

where NO, M% MJ;, MZ represent the circuit shear flows and hoop moments that

need to be determined. Let us write the shear flows and hoop moments in a vector
form as:

ny=INO MO M) Mmi|T. (16)

The continuity condition that must be satisfied for a closed profile yields the fol-
lowing four equations:

% Yasds = 2AO¢,Xa % kssds =0, % Ykssds =0, % 2Kssds =0,

(17)

where Ag is the enclosed area of the section. It is noted that, for a m-celled section,
the continuity conditions lead to a set of 4m equations. Jung et al. [8] made an
assessment for uniform beams with multiple-celled sections. For a two-cell section,
a total of 8 continuity equations can be obtained. Substituting (8) into (17), the
circuit shear flows and hoop moments are obtained as

{(n} =101"'[Pl{q) = [el{q}, (18)
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where [ Q] is a symmetric [4 x 4] matrix and [ P] is a fully populated [4 x 5] matrix.
By substituting (18) into (12), the unknown shear flows and hoop moments N, and
M, are obtained as:

{Z’z } =[/1tg) (19)

The [ f] that appears in (19) corresponds to the active components of shear flows
according to the terminology adopted in Gjelsvik [9]. So far, the unknown shear
flow and hoop moment resultants are derived as a function of beam displacement
derivatives. These relations are used to construct the beam force—displacement re-
lations as in the classical stiffness-based approach. This is done by inserting (8) and
(19) into (12) whereupon the final equations are written in a form:

{F}=[K]{q}, (20)

where [K] is the cross-sectional stiffness matrix and {F'} is the generalized beam
force vector given by the relation,

{F}=IN My M. T M,]", 1)

where N is the axial force, My and M, are the bending moments about the y and z
directions, respectively, T is the twisting moment and M,, is the Vlasov bi-moment.
The [5 x 5] matrix that appears in (20) approximates the cross-section stiffness
matrix [K] at an Euler-Bernoulli level for extension and bending and a Vlasov
level for torsion and include the influence of the shell wall thickness.

3. Results and Discussion

Prior to the main discussion, there is a need to check whether the warping functions
appeared in (9) satisfy the constraint conditions given by the relation: § y; ds = 0.
It is noted that the integration runs along the mid-line contour of a section wall.
A single-cell thin-walled box section is chosen as an example. Each wall of the
box section consists of [156] layup. For convenience, the integration starts at the
midpoint in the right wall where the symmetry axis is located (see Fig. 2). It is
noted that, at this specific location, the section warpings should be zero. In Fig. 3,
results showing the distribution of respective warping functions are presented with
the contour coordinate. It is observed that, as the integration continues and reaches
its original location, all the section integrals become identically zero. Thus the
constraint conditions of the warping functions become satisfied and, further, the
warping functions associated with the pretwist effects are taken into account appro-
priately in the beam formulation. In the remaining parts of this section, the efficacy
of the proposed beam theory and also the influence of pretwist and fiber angles on
the static behavior of composite beams will be discussed.

The first example considered is a pretwisted steel beam that used in the work of
Durocher and Kane [10]. The length of the beam is 76.2 mm and has a rectangular
solid section with a width of 25.4 mm and a thickness of 2.54 mm. The material
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Figure 2. Control points of a single-cell box section.
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Figure 3. Variation of contour warping functions for thin-walled box section.

111

properties are: Young’s modulus £ = 203.4 MPa and Poisson’s ratio v = 0.3532.
The total geometric pretwist angle St from root to tip of the beam is 68.8°. The
beam is clamped at its root and is loaded at the beam tip. Figure 4 presents the com-
parison results of both the axial displacements and induced tip twist deformation for
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Figure 4. Comparison of response for pretwisted rectangular solid beam under tip tension (22 250 N).

the pretwisted beam under the action of tip tensile load amounting 22250 N. The
present results are compared with the analysis results obtained by Durocher and
Kane [10] and with two-dimensional shell finite element analysis results using the
MSC/NASTRAN. A total of 200 CQUAD4 elements are used for the NASTRAN
analysis. As is expected, the pretwisted beam presents a geometrically coupled re-
sponse between extension and torsion. It is seen that the present theory captures the
coupled response satisfactorily. The agreement between the three different results
appears acceptable. In general, the present results with the mixed formulation are
in a better agreement with the NASTRAN results than those predicted by Durocher
and Kane [10]. Figure 5 shows the comparison of both the tip twist and induced tip
tension displacements for the cantilevered beam subjected to a tip torque load of
22.6 N m. A good agreement is obtained in comparison with Durocher and Kane
and NASTRAN analysis results.

The next example is a rectangular solid section beam with elastic couplings. The
schematic of the beam is presented in Fig. 6. The length is 254 mm while the width
and height of the beam are 25.4 mm and 2.54 mm, respectively. The beam section is
composed of [#3/—63] to result in an extension—torsion coupling. The positive fiber
angles are defined as the right angle from the top surface of the beam (see Fig. 6).
The mechanical material properties of a graphite-epoxy lamina used for the beam
are summarized in Table 1.
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Figure 5. Comparison of response for pretwisted rectangular solid beam under tip torque (22.6 N m).

z, W

Figure 6. Geometry of composite beams with rectangular solid section.

Figure 7 shows the comparison of the direct tip response obtained by the present
mixed beam theory and a two-dimensional MSC/NASTRAN analysis for compos-
ite beams subjected to a tensile load of 1000 N. A total of 160 CQUAD4 plate/shell
elements are used for the NASTRAN calculation. In Fig. 7, the tip axial displace-
ments are presented as a function of pretwist angles while the fiber angles 6 are
varied from O to 90°. The correlation between the present results and the NAS-
TRAN predictions is seen to be excellent. It is indicated that both the fiber angles
and the pretwist angles affect the beam behavior significantly. As the pretwist angle
varies from 0 to 90°, a maximum of 60% increase in the tip axial displacement is
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Table 1.
Mechanical properties of graphite-epoxy lamina

Properties Values

Eqp 141.9 GPa

Eyy 9.78 GPa
G2 6.13 GPa
V12 0.42

Ply thickness 0.127 mm

(X109
3.0
0=90" -

—&— Present
--H-- MSC/Nastran

Tip Extension (mm)

Pretwist Angle (deg)

Figure 7. Comparison of tip axial displacements with respect to pretwist angles for composite beams
under a tensile load (1000 N).

attained at a layup angle of zero degrees. In addition, as much as 1.348% increase
of tip tension is obtained at the zero pretwist angle as the fiber angle is changed
from 0 to 90°. Figure 8 shows the induced tip twist deformation predicted by the
present theory and the NASTRAN analysis for the same beam undergoing tensile
load of 1000 N. The correlation between the two results appears fair to good for
this case. Results with four different layup cases are presented together to show and
quantify the effect of fiber angles. It is observed that the induced response of the
pretwisted beam is highly dependent upon the layup angles adopted in the wall of
the beam. This implies that the elastic couplings introduced by the non-zero ply an-
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Figure 8. Comparison of induced tip twist angles with respect to pretwist angles for composite beams
under a tensile load (1000 N).

gles play significant roles for the induced beam behavior. The geometric couplings
arising due to the pretwist angles are combined with the effect of elastic couplings
to make the analysis more complicated. As can be found in Fig. 8, untwisted beams
with non-zero ply angles show a purely elastic behavior. The magnitude of elastic
couplings is biggest when the ply angle is set to 30°.

In Fig. 9, the direct tip response of composite beams under a tip torque load of
113 N m is presented as a function of pretwist angles. As in the previous cases, the
present results are compared with those by NASTRAN analysis. The correlation
is poor for the 0-degree beam while the remaining cases appear acceptable. The
reason for a fairly large discrepancy in the zero degree case is unclear at this time
but the local distortion effect that might occur in the NASTRAN analysis could be
a possible source of the error. It is believed that the discrepancy is not associated
with the modeling of pretwist since the error is biggest for beams with no pretwist.
For better correlation, a more refined representation of torsion warping in the beam
model is necessary to capture the higher order distortion effect associated with the
torsion.

Figure 10 shows the induced axial displacements denoted as a function of
pretwist angles for rectangular solid section beams subjected to a torque load of
113 N m. Even though the respective magnitudes are different, the induced behavior
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Figure 9. Comparison of tip twist angles with respect to pretwist angles for composite beams under a
torque load (113 N m).

0.002

—&— Present
--H-- MSC/Nastran 6=30"

Induced Tip Extension (mm)

0 f ' | |
0 30 60 90

Pretwist Angle (deg)

Figure 10. Comparison of induced tip tension with respect to pretwist angles for composite beams
under a torque load (113 N m).
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seems identical as that with Fig. 8. This is because the beam has only tension—
torsion couplings due to the geometric and elastic origin that lead to an identical
tension—torsion coupled response.

Figures 11-13 present responses of pretwisted beams undergoing tip tension or
tip torque load as a function of ply orientation angles. As in the previous cases,
the wall of the beam is constructed as: [#3/—63]. Figure 11 shows the direct tip
axial response with changing pretwist angles. As the pretwist angle is increased
from O to 90°, the tip displacements become larger. Thus, a softening behavior is
noticed with increasing pretwist angles. In Fig. 12, the direct tip twist response is
plotted with respect to ply angle changes. In contrast to the tensile response, the
tip twist deformation becomes reduced as the pretwist angles are increased, i.e., a
stiffening behavior is obtained with an increase of the pretwist angles. Figure 13
shows the induced response presented as a function of ply angles. It is indicated
that, for the untwisted (81 = 0) beam, the induced response is purely dominated by
the elastic couplings introduced by the non-zero ply angles of the beam. With the
introduction of pretwist angles, however, both the elastic and geometric tension—
torsion couplings combine to play substantial roles in the beam behavior.

(X 10

Tip Extension (mm)

0.0 I I I I I
0 15 30 45 60 75 90

Ply Angle (deg)

Figure 11. Effect of pretwist angles on tip axial displacements of composite beams under a tensile
load.
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Figure 12. Effect of pretwist angles on tip twist angles of composite beams under a torque load.
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Figure 13. Effect of pretwist angles on induced response of composite beams under a tensile load.
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4. Conclusions

In the present work, a mixed beam formulation for thin-walled composite beams
with built-in pretwist has been developed. The beam force—displacement relations
were obtained by using the Reissner semi-complementary energy functional. The
bending and torsion-related warpings introduced with the pretwist effect were de-
rived in closed form in the beam formulation. The theory was validated with
available literature and detailed finite element results using the two-dimensional
MSC/NASTRAN analysis. Rectangular solid section beams with and without elas-
tic couplings were considered in the comparison study. Overall, an acceptable
correlation of responses with NASTRAN predictions was obtained except a direct
torsion case. It was found that the discrepancy was not related with the modeling
of pretwisted effect but a more refined representation of warping models associated
with torsion appeared necessary toward a better correlation. The effects of pretwist
and fiber orientation angles on the static behavior of composite beams were also
investigated. It was found that both the fiber angles and pretwist angles affected the
beam behavior significantly. More than 1.300% increase of direct tip displacements
was attained with changing ply orientation angles while a maximum of 60% in-
crease in the beam response was noticed with respect to the pretwist angle changes.
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