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Abstract
Liquid molding processes, such as resin transfer molding, involve resin flow through a porous medium inside
a mold cavity. Numerical analysis of resin flow and mold filling is a very useful means for optimization of
the manufacturing process. However, the numerical analysis is quite time consuming and requires a great
deal of effort, since a separate numerical calculation is needed for every set of material properties, part size
and injection conditions. The efforts can be appreciably reduced if similarity solutions are used instead of
repeated numerical calculations. In this study, the similarity relations for pressure, resin velocity and flow
front propagation are proposed to correlate another desired case from the already obtained numerical result.
In other words, the model gives a correlation of flow induced variables between two different cases. The
model was verified by comparing results obtained by the similarity relation and by independent numerical
simulation.
© Koninklijke Brill NV, Leiden, 2009
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1. Introduction

In the liquid molding process of composites, numerical analysis of mold filling is
a useful and necessary means of process optimization, such as determination of
gate/vent locations and their opening–closing sequence, control of injection pres-
sure and flow rate [1–4]. The analysis also helps in the selection of a suitable ma-
terial system. For simple geometries, analytic solutions can be used to estimate the
mold filling pattern [5, 6]. However, in many cases of realistic and complex geome-
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tries, numerical methods have been employed to obtain accurate solutions. Various
numerical schemes, such as the finite difference method [7, 8], the boundary ele-
ment method [9, 10], and the finite element method [11–22], have been adopted
and tested. At present, a control volume based finite element method (CVFEM) is a
widely accepted method due to its relative ease of implementation and effectiveness
in treating the moving flow front without mesh regeneration.

In general, a great deal of effort is necessary to perform a numerical analysis as
it requires mesh generation, input data preparation, post processing of the result,
etc. However, the effort is appreciably reduced by using similarity solutions, which
obviate the need for repeated simulations. In this paper, similarity relations of vari-
ables induced in resin flow are proposed to obtain multiple results for many cases
based on data from only one numerical analysis.

2. Similarity Relations

The conservation of momentum for resin flow through a fiber preform is described
by the well-known Darcy law [23]. Darcy’s law is a kind of simplified form of
the Navier–Stokes equation for resin flow through porous media. The flow through
porous media is assumed to be a low Reynolds number flow in which the inertia
force is negligible and the pressure force balances the viscous force.

ūD = −[K]
μ

∇P, (1)

where ūD is a Darcian velocity, [K] the permeability matrix of the reinforcement,
P pressure, ∇P its gradient, and μ the resin viscosity. Here, the resin is assumed to
be an incompressible Newtonian liquid. Actually, the Darcian velocity is an imagi-
nary velocity and the real velocity that we observe in mold filling is an apparent or
pore velocity (ūP) defined as

ūP = ūD

ε
= −[K]

εμ
∇P, (2)

where ε = 1 − Vf (porosity), Vf = fiber volume ratio.
The governing equation of resin flow is obtained by substituting the apparent

velocity into the mass conservation equation

∇ · ūP = ∇ ·
(

−[K]
εμ

∇P

)
= 0. (3)

If the partial differential equation is linear and homogeneous, the solution obtained
for the given material properties, the part geometry and the boundary conditions, is
also a solution for the case where all these parameters are changed. The existence
of a similarity solution is deduced from the fact that the governing equation (3)
is linear and homogeneous. Also, the analogy of flow front shapes shown in the
cases where the properties and the conditions are different guarantees the existence
of similarity solutions. The boundary conditions for solving the pressure field are
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summarized as follows

Injection Gate: P = Pi(t) (4)

Mold Wall:
∂P

∂n
= 0 (5)

Flow Front: P = 0, (6)

where Pi(t) is the pressure at the gate and n denotes the direction normal to the
mold wall.

When the flow is assumed to be quasi-steady, the pressure field is obtained by
solving the governing differential equation (3) with the given boundary conditions
(equations (4)–(6)). The solution technique can be either analytical or numerical.
For example, the solution of the pressure field can be determined through the vari-
ational or weak formulation of (3) and application of the boundary conditions,

∫∫∫
R

w∇ · ūP dV =
∫∫∫
R

w∇ ·
( [K]

εμ
∇P

)
dV = 0, (7)

where w is a weight function, R the region filled with resin and V the volume.
With the aid of the pressure field obtained by (7), the velocity field at that instant is
calculated from (2). Then, the flow front is advanced with the resin velocity and the
same procedure is repeated for the newly filled region. To derive similarity relations,
additional assumptions are made as follows:

• In general, the viscosity changes as chemical reaction progresses (Fig. 1). The
resin is premixed and then injected into the mold. The mixed resin experiences
the same temperature history throughout the process. Therefore, the viscosity at
the specific instant of mold fill is uniform throughout the impregnated region.

• The drag force induced by the flow does not cause distortion of the preform;
thus, the permeability does not change during the flow.

Figure 1. Variation of resin viscosity with time due to chemical reaction.
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To find the similarity relations, two problems are examined: an original or ref-
erence problem and a sample one with different material and geometric properties
and process conditions.

2.1. Similarities in Pressure and Its Gradient Field

As a first step in mold filling analysis the pressure field must be determined in the
impregnated region. The material properties, part geometry and injection pressure
for driving the model are defined in Table 1 and Fig. 2. The injection pressure and
boundary conditions for the pressure field can be selectively defined according to
the process requirements (Fig. 3). When the resin is injected through multiple gates,
the ratios of injection pressures at the gates in the original problem should be equal

Table 1.
Material properties, part geometry and injection pressure

Original Sample

Reinforcement Permeability, [K] [K]o,i (1 � i � n) [K]s,i = aK[K]o,i (1 � i � n)

Porosity, ε εo,i (1 � i � n) εs,i = aεεo,i (1 � i � n)

Resin Viscosity, μ μo(t) μs(t)

Part shape, X Xo,i (1 � i � n) Xs = aLXo
(X: position (n: number Xs = (x∗, y∗, z∗)

vector) of reinforcement) Xo = (x, y, z)

Injection Po(t) = Po,k(t) Ps(t) = Ps,k(t) (k = 1, . . . , l)

pressure, P (k = 1, . . . , l)

(l: number of injection port)

t : time, subscript ‘o’ and ‘s’: the original and the sample.
aε , aK, aL: scale factors between the original and the sample.

Figure 2. Definitions of properties and variables for deriving similarity relations.
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Figure 3. Types of resin injection.

to those in the sample problem to maintain the analogy of flow front shape between
the two cases. This is an important requirement for the existence of a similarity
solution for multiple-gate injection.

Po,k(t)

Po,1(t)
= Ps,k(t)

Ps,1(t)
(2 � k � l), (8)

where Po,1(t) and Ps,1(t) are the first gates in the original and sample cases where
the resin is injected into the mold. In the case of sequentially opened multiple gates,
the open time at each gate should also be adjusted in the sample problem and it will
be described in detail in the ‘time scale transformation’ section below. In the case
of a single gate, the gate open time and the ratio of pressures are not required for
development of the model.

Applying equation (7) to m components of reinforcement filled with resin at a
specific instant in the original problem (Fig. 2), we obtain∫∫∫

R1

w∇ ·
( [K]o,1

εo,1μo(t)
∇P

)
dV + · · · +

∫∫∫
Rm

w∇ ·
( [K]o,m

εo,mμo(t)
∇P

)
dV

= 1

μo(t)

m∑
j=1

{∫∫∫
Rj

w∇ ·
( [K]o,j

εo,j

∇P

)
dV

}
= 0 (1 � m � n), (9)

where Rj is the j th component of reinforcement in the impregnated region. Here,
we assume the solution of pressure field at the j th reinforcement component as

Solution of pressure field = [P(Xo,j , to)]sol 1 � j � m, (10)

where Xo,j is the position vector defining the j th reinforcement and to the time
scale in the original problem.

Applying equation (7) to the filled region in the sample case by analogy with the
original, we obtain

1

μs(t)

m∑
j=1

{∫∫∫
R∗

j

w∇ ·
( [K]s,j

εs,j
∇P

)
dV ∗

}
= 0 (1 � m � n), (11)
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where R∗
j is the j th reinforcement component of the sample case and equation (1)

1 is a volume integral in the sample. The above integral can be transformed into that
of the original case by introducing the Jacobian cubic (a3

L) and the scale factors aK
and aε accounting for the permeability and porosity effects on the transformation.

aKa3
L

aε

1

μs(t)

m∑
j=1

{∫∫∫
Rj

w∇ ·
( [K]o,j

εo,j

∇P

)
dV

}
= 0 (1 � m � n). (12)

The integral part of (12) is the same as that of (9). Therefore, based on the linearity
and homogeneity of the governing equation, the solution of (12) is determined by
the ratio of injection boundary conditions between the two cases. This ratio can be
described by the pressure at the first gates, Po,1(to) and Ps,1(ts), which are repre-
sentative of the two cases (equation (8)). The relation between to and ts is explained
below in the ‘time scale transformation’ section. The solution of (12), the pressure
field, and its gradient are described as follows by considering equation (10) and
Table 1.

[P(Xs,j , ts)]sol = Ps,1(ts)

Po,1(to)
[P(Xo,j , to)]sol 1 � j � m, (13)

[∇P(Xs,j , ts)]sol = 1

aL

Ps,1(ts)

Po,1(to)
[∇P(Xo,j , to)]sol 1 � j � m, (14)

where Xs,j is a position vector of the j th reinforcement component in the sample
problem. Finally, (13) and (14) represent similarity relations of pressure and its
gradient between the original and the sample cases at a specific instant of mold fill.
It is known from (13) and (14) that the similarities of pressure and its gradient are
dependent on the injection pressure ratio and the part size scale factor.

2.2. Similarity in Resin Flow Velocity

Resin flow is induced by the pressure gradient developed in the flow field and
the gradient determines the resin penetrating velocity through the porous medium.
Therefore, the obtained pressure gradient is used to determine resin velocity (equa-
tion (2)). The apparent resin velocity in the flow region of the original case can be
rewritten as

ūp(Xo,j , to) = − [K]o,j

μo(to)εo,j

[∇P(Xo,j , to)]sol (1 � j � m). (15)

For the flow front shape of the sample which has an analogy with that of the original,
resin velocity is expressed as follows with the aid of the scaling factors of material
property, viscosity, injection pressure and velocity of the original problem.

ūp(Xs,j , ts) = − [K]s,j

μs(ts)εs,j
[∇P(Xs,j , ts)]sol,j

= aK

aεaL

μo(to)

μs(ts)

Ps(ts)

Po(to)
ūp(Xo,j , to) (1 � j � m). (16)
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Equation (16) is the final form of resin velocity similarity between the original and
the sample problems at a specific instant of mold fill. It is shown from (16) that the
similarity of resin velocities depends upon all the material properties, part size and
injection boundary conditions.

2.3. Similarity in Flow Front Time Scale Transformation

It is deduced from the similarity of flow front shapes that there is only a change of
time scale between corresponding points on the flow fronts. The time transforma-
tion is formulated as follows. As a starting point, the similarity of resin velocity,
equation (16), is resolved into displacement (S) and time expressed as

μo(to)

μs(ts)

Ps,1(ts)

Po,1(to)

dts

dto
= aεaL

aK

dSs,j

dSo,j

(1 � j � m). (17)

The flow fronts for the two cases at a specific time match exactly by applying the
part geometrical scale factor (aL) to the displacement because the flow front is a
time integral of the displacement.

Ss,j = aLSo,j (1 � j � m). (18)

By replacing (17) with (18) and integrating it with respect to time, the transforma-
tion rule gives

∫ ts

0

Ps(t)

μs(t)
dt = aεa

2
L

aK
·
∫ to

0

Po(t)

μo(t)
dt. (19)

The relation between time scales to and ts in (13)–(15) is determined by (19). This
equation is the time scale transformation for flow fronts between the original and
the sample case. It is known from (19) that the similarity in time scales is also
dependent on all the material properties, part size and injection boundary condi-
tions.

3. Numerical Simulation of Flow Field

Resin flow can be predicted by means of experimental, analytical or numerical
methods. The most powerful method for solving a real problem is numerical analy-
sis. Therefore, a numerical scheme was applied to verify the suggested similarity
relations. A numerical formulation was performed for a three-dimensional shell
structure, which is locally a two-dimensional case. Of course, the similarity model
is valid for mold filling of fully three-dimensional structures.

All parameters and properties were averaged through the thickness direction, as
the shell structure can be regarded as two-dimensional locally. The pressure field
was formulated using the Galerkin finite element scheme [24]. The formulation
starts with the discretization of the calculation domain into a finite number of tri-
angular shell elements (Fig. 4). The weak formulation of the governing equation
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Figure 4. Definitions used in numerical formulations.

can be obtained by multiplying by a weight function w and integrating it over the
domain. ∫

A

w(∇ · ūP)dA = 0, (20)

where A means an area or a calculation domain filled with resin in the locally
two-dimensional plane and ūP the apparent resin velocity. Now, we define the flow
conductance S(= [K]/με) in (3) to simplify the derivation. Equation (20) can be
rearranged using the flow conductance, the integration-by-parts formula and the
divergence theorem as follows∫

A

S(∇w · ∇P)dA =
∫

�

S(n̄ · ∇P)w d� =
∫

�

S
∂P

∂n
w d�, (21)

where � is the calculation boundary, n̄ a unit vector normal to the calculation
boundary and ∂P

∂n
the pressure gradient normal to the boundary.

The volumetric flux (−S ∂P
∂n

) on the right-hand side of (21) can be modified by
using the natural boundary condition

−S
∂P

∂n
= s(P − P̂ ), (22)

where s, P̂ are the coefficients imposed on the real pressure field boundary. This
is a type of price paid for the ease of formulation. Since (21) is valid for the entire
calculation domain, it can be applied to an element Ae as well∫

Ae

Se(∇w · ∇P)dAe +
∫

�e

sePw d�e =
∫

�e

seP̂w d�e, (23)

where subscript e denotes the element. Approximating the state variable P and the
weight function w with the same shape function,

P e(x, y) =
Ne∑
j=1

P e
j ψe

j (x, y), we(x, y) =
Ne∑
j=1

we
jψ

e
j (x, y), (24)

where Ne is the number of nodes in the element, P e
j the pressure value at the j node

in the e element, ψe
j a local shape function of the element, we

j a weight constant at
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the j node in the e element, and P e(x, y) and we(x, y) a state variable and a weight
in the element, respectively. The equation generated by substituting (24) into (23)
should be satisfied for any weight constant we

j . Therefore, the stiffness matrix and
the load vector for the element are

Ne∑
j=1

Ae
ijP

e
j = Be

i i = 1,2, . . . ,Ne, (25)

where

Ae
ij =

∫
Ae

Se

(
∂ψe

i

∂x

∂ψe
j

∂x
+ ∂ψe

i

∂y

∂ψe
j

∂y

)
dAe +

∫
�e

seψ
e
i ψ

e
j d�e, (26)

Be
i =

∫
Ae

ψe
i dAe +

∫
�e

seP̂ψe
i d�e. (27)

In fact, the boundary integral terms of (26) and (27) vanish when the elements exist
inside a real mold space due to the conservation of volume flux. They have their
own effects when the element boundary coincides with the real mold boundary.
The stiffness matrix and the load vector obtained from the elements are added up
to form the global stiffness matrix and the load vector. Finally, the pressure field
is determined by solving the system of equations made up of the global stiffness
matrix and the load vector. The resin velocity at a specific time is calculated from
the pressure gradient (equation (3)). The velocity at the flow front is used to advance
the resin front at each time step.

The flow front advancement scheme is described as follows. The region filled
with resin or the calculation domain changes as the flow front proceeds. This means
that there is a moving boundary and it causes the main difficulty in the numerical
simulation. The proper description of the domain filled with resin is very important
because it plays a crucial role in the accurate prediction of the flow front and the
related physical parameters. In general, there can be two choices for a grid system,
a moving grid or a fixed grid. In the moving grid system, the calculation domain
can be precisely described by regenerating new grids at the specific mold fill time.
But if the domain is very complex, the discretization itself causes another difficulty.
On the other hand, in the fixed grid system, the grids generated at the beginning are
used throughout the calculation. This greatly relieves the burden of node regenera-
tion and this is why the fixed grid system is widely used and was selected for this
study.

Polyhedral control volumes in the domain are defined by connecting the cen-
troids of the elements and the midpoints of the element sides (Fig. 4). The boundary
of each polyhedron constitutes the control surface of the corresponding control
volume and mass transfer takes place through this surface. Each control volume
element is represented by a nodal point located at the center of the control volume
element. The control volume elements are classified into three categories according
to the volume fraction of resin infiltration (fr).
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Figure 5. Geometry and mesh for numerical simulation in the original case.

– Fully filled region: fr = 1.

– Empty region: fr = 0.

– Flow front region: 0 < fr < 1.

The fill ratio fr of each control volume element is calculated and updated during
mold filling. When the fill ratio becomes unity, the nodal point becomes a part of
the fully filled region.

The participation of the flow front nodes into the calculation domain is deter-
mined according to their fill fractions. The control volumes whose fill fractions
lie between 0 and 1 are taken as the flow front control volumes. The time when
the filled fraction fr is 0.5 is recorded. The meaning of fr = 0.5 is that the flow
front just passes through the particular nodal point, namely, the centroid of the
control volume. The fill fraction value of 0.5 is statistically found to be the best
value to represent the flow front as it passes through the center of the control vol-
ume and is widely accepted in most moving boundary problems using fixed grids.
The recorded fill times are then interpolated to obtain the flow front lines. These
lines become smoother and closer to the real flow fronts as the node density in-
creases.

The numerical scheme was verified by comparing the calculated and predicted
complete fill times for the injection condition of constant flow rate in the original
problem. Resin was injected through Gate 1 (Fig. 5). The calculated fill time for the
part volume of 2.064 × 10−4 m3, preform porosity of 0.5 and flow rate of 1.0 ×
10−5 m3/s is 10.32 s, whereas that determined by numerical simulation is 10.30 s
for an error of approximately 0.20%.
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Table 2.
Material properties used in the original problem

Rein-
force-
ment

Perme-
ability,
[K]

Mat 1 [K]o,1 =
[

10 × 10−10 0
0 8 × 10−10

]
m2, θ = 135◦

Mat 2 [K]o,2 =
[

6 × 10−10 0
0 4 × 10−10

]
m2, θ = 0◦

Mat 3 [K]o,3 =
[

5 × 10−10 0
0 2.5 × 10−10

]
m2, θ = 45◦

Porosity, Mat 1 εo,1 = 0.65
ε Mat 2 εo,2 = 0.4

Mat 3 εo,3 = 0.5

Resin Viscosity, μo = 0.7 Pa · s
μ

θ : Rotation angle of reinforcement between the principal direction and the Cartesian coordinate
system.

4. Verification and Discussion

As already mentioned, the suggested similarity model can predict mold filling
of fully three-dimensional geometries. Numerical simulations for locally two-
dimensional shell structures, however, were performed to simplify the verification.
The part shape, the generated mesh and the elements are shown in Fig. 5. The node
and element numbers in the original case are 513 and 936, respectively. The same
node and element numbers are used in the sample case. The dimensions of the orig-
inal shell structure are 0.3 × 0.2 × 0.08 m3 and the thickness of the part is 0.003 m.
The sample part is magnified by a scale factor aL = 2 with respect to the original.
Three different preforms were used and the resin was sequentially injected through
two gates. Material properties used in the original case are given in Table 2 and the
injection pressure in the original is defined as

Po(t) =
⎡
⎣ Po,1(t) = 1 × 105 Pa

Po,2(t) =
{0 0 � t < 30

1.5 × 105 Pa t � 30.
(28)

The scale factors applied in the transformation from the original to the sample case
are

aε = 0.25, aK = 0.5, aL = 2. (29)

The viscosity in the sample case is

μs(t) = 0.7 exp

[
40

Ts(t) + 273.15
+ 0.01t

]
Pa · s, (30)

where Ts(t) =
[

20 + 0.5t ◦C 0 � t � 100
70 ◦C t � 100.

(31)
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Figure 6. Viscosity variation in the original and sample cases.

The entire quantity of resin has to be premixed before injection and both the resin
in the reservoir and that in the mold experience the same temperature history. In
general, the viscosity change due to chemical reaction is expressed as a function
of temperature and degree of cure [25–28]. For the given cure cycle, however, the
viscosity model with temperature and time as variables can be simplified when
complete mold filling occurs at an early stage of reaction and the progression of
chemical reaction is quite low (equation (30)). If a temperature history of injected
resin changes, the coefficients of (30) change. A graphical description of viscos-
ity variation in the original and sample cases is given in Fig. 6. As the verification
is performed for multiple gates, equation (8) should be satisfied for the existence
of similarity and the ratio of first gate pressures at a specific instant is defined
as

Ps,1(t)

Po,1(t)
= 3

√
0.02t + 0.1. (32)

To determine the injection time of the second gate, the time scale transformation is
necessary (equation (19)) and the result is given in Fig. 7. The injection time, 56 s
in (33) was determined from Fig. 7. The gate pressures for the sample case are

Ps(t) =
⎡
⎣ Ps,1(t) = Po,1(t) × 3

√
0.02t + 0.1 Pa

Ps,2(t) =
{

0 0 � t < 56
Po,2(t) × 3

√
0.02t + 0.1 Pa t � 56.

(33)

The injection pressures at the two gates of the original and sample cases are shown
in Fig. 8.
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Figure 7. Time scale transformation between the original and the sample.

Figure 8. Injection pressures in the original and sample cases.

Using all the properties and conditions defined above, numerical simulations
were performed and compared with model predictions. The complete fill times of
the original and sample problems were 141.4 s and 211.9 s, respectively. The fill
time predicted by the model is 211.6 s and corresponds to an error of about 0.14%.
The flow fronts, when matched by the time transformation rule (Fig. 7), are in good
agreement as shown in Figs 9 and 10. The pressure fields for the original case at
84.1 s nearly coincide with those of the sample case at 117.6 s (Figs 11 and 12,
equation (34)). The velocity fields at 67.9 s for the original case agree well with
those at 99.5 s for the sample case, although the agreement is not as good as for
the flow fronts and pressure fields (Figs 13 and 14, equation (35)). The slightly in-
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Figure 9. Numerical result of flow front propagations in the original case.

Figure 10. Numerical result of flow front propagations in the sample case.

creased error does not come from the model, but originates in the numerical scheme
used in the study.

Psol,j (Xs,j ,117.6) = 4.6976 × Psol,j (Xo,j ,84.1) 1 � j � 3, (34)

ūp(Xs,j ,99.5) = 1.8088 × ūp(Xo,j ,67.9) 1 � j � 3. (35)

The smoothness of the loci lines in Figs 9–14 can be improved by increasing the
number of elements in the simulation. The above results prove the validity of the
similarity model.
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Figure 11. Numerical result of pressure field at the fill time 84.1 s in the original case.

Figure 12. Numerical result of pressure field at the fill time 117.6 s in the sample case.

5. Conclusions

A new method, the similarity technique, was proposed to predict the resin flow in
cases with different material, geometric and process parameters in resin transfer
molding applications based on only one numerical simulation of a reference case.
The existence of similarity solutions was deduced from the linearity and homogene-
ity of the governing partial differential equation. This yields the similarity relations
between various cases where the reinforcement properties (permeability and poros-
ity), the resin property (viscosity), the part dimensions and the injection conditions
vary. A control volume based finite element method (CVFEM) was incorporated
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Figure 13. Numerical result of velocity field at the fill time 67.9 s in the original case.

Figure 14. Numerical result of velocity field at the fill time 99.5 s in the sample case.

in the calculation of pressure fields, resin velocity and flow front propagation for a
given geometry and injection conditions.

The proposed similarity method was verified by matching the numerical results
with those predicted by the similarity model. They show good agreement. The re-
sult is an appreciable saving in time and effort, by obviating the need for repeated
numerical simulations every time the process parameters change. Furthermore, the
similarity model is also very useful in optimizing mold filling conditions.
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