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Abstract
A matrix method for evaluating effective electro-magneto-thermo-elastic properties of a generally
anisotropic multilayered composite is presented. Physical variables are categorized into two groups: one
that satisfies the continuity across the interface between layers and another that satisfies an average inter-
layer compatibility (which is also exact). The coupled electro-magneto-thermo-elastic constitutive equation
is accordingly reassembled into submatrices, which leads to the derivation of concise and exact matrix
expressions for effective properties of a multilayered composite having the coupled physical effects. Com-
paring the results for a purely elastic multiplayer with those from other theoretical approaches validates the
developed method. Examples are given for a PZT-graphite/epoxy composite and a BaTiO3–CoFe2O4 multi-
layer which exhibit piezo-thermoelastic and magnetoelectric properties, respectively. The result shows how
a strong magnetoelectric effect can be achieved by combining piezoelectric and piezomagnetic materials in
a multilayered structure. The magnetoelectric coefficient of the BaTiO3–CoFe2O4 multilayer is compared
with those for fibrous and particulate composites fabricated with the same constituents.
© Koninklijke Brill NV, Leiden, 2009
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1. Introduction

In recent years, the multilayered composites with piezoelectric, thermoelectric and
magnetoelectric effects have found an increasing number of applications in sen-
sor/actuator technology, smart materials and microelectronics. The simultaneous
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magnetoelectric effect that is rarely found in monolithic materials (e.g., [1]) can
be easily achieved by constructing a two-phase composite [2] (in a multilayer or
inclusion-matrix type composite) with components having piezoelectric and piezo-
magnetic effects. These multilayers may be formed as a several hundred-micron-
thick layer, e.g., the thin film on infrared detectors, or as a large-scale structure, e.g.,
the smart composite patch for controlling aircraft-wing flutter. These active prop-
erties of materials are often incorporated into the conventional composites to meet
the practical requirements of high stiffness and strength, low thermal expansion,
high thermal conductivity, etc. For the design and analysis of such composites for
applications to smart structures, the capability of predicting effective (overall) ma-
terial properties and especially whether the desired cross-properties are achieved, is
essentially required. To analyze the effective material properties of the new multi-
functional composites with combined piezoelectric, piezomagnetic, thermoelectric
and thermomagnetic effects, one needs a general approach that can deal with these
different physical effects in a unified way.

The determination of the effective material properties of layered media has long
been an interest in many different areas, including geophysics and micromechanics.
The effective elastic and thermoelastic properties of layered composites have been
analyzed by many authors [3–6]. Akcakaya and Farnell [7] investigated on the ef-
fective elastic and piezoelectric constants of superlattices. Recently, Chen et al. [8]
employed the Mori–Tanaka’s self-consistent mean field approximation scheme in
conjunction with the continuity conditions at layer interfaces to obtain the effective
properties of multilayer composites. In general, it should be noted that the layered
medium is one of few composite types for which exact effective material properties
can be obtained for its simple geometry [3]. Therefore, unlike with the inclusion-
matrix type composites, an approximate averaging scheme is not necessary in the
analysis of the effective properties of layered composites.

In this paper, our previous work [6] on the purely elastic multilayers is ex-
tended and generalized to multilayers with various physical effects. Examples of
calculating effective properties of a piezo-thermoelastic (PZT-graphite/epoxy) and
piezoelectric–piezomagnetic (BaTiO3–CoFe2O4) composites are given. The effec-
tive electric, magnetic, thermal and elastic properties are presented for varying
volume fraction of a constituting layer. Especially for the BaTiO3–CoFe2O4 com-
posite, the magnetoelectric coefficient is compared with those of fiber–matrix and
particulate composites to validate the present approach and the calculated results.

2. Effective Properties of Electro-Magneto-Thermo-Elastic Multilayer
Composites

2.1. Constitutive Equations

The constitutive equations for an anisotropic thermoelastic solid having piezoelec-
tric, piezomagnetic, thermoelectric and thermomagnetic effects are given by:

σ = Cε − eTE − qTH − γ�θ, (1)
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D = eε + κE + ζH + p�θ, (2)

B = qε + ζTE + λH + m�θ, (3)

s = γ · ε + pE + mH + cν�θ, (4)

where σ and ε are the stress and strain; C is the elastic stiffness; E and D are the
electric field and the electric displacement; e and κ are the piezoelectric coefficient
and the dielectric constant; H and B are the magnetic field and the magnetic induc-
tion; q and λ are the piezomagnetic coefficient and the magnetic permeability; ζ is
the magnetoelectric coefficient; s and �θ are the entropy per unit volume and the
temperature change from the ambient temperature (θ0); the heat capacity per unit
volume at a constant strain is cνθ0 and the thermal stress coefficient γ is related
with the thermal expansion coefficient β by γ = Cβ; p and m are the thermoelec-
tric and thermomagnetic coefficients. In this derivation, all coefficient matrices are
assumed as full-matrix allowing the general anisotropy in the material properties.

Constitutive equations for a material lacking some of the physical effects can be
readily obtained from (1)–(4). For example, those for a composite with piezoelectric
and piezomagnetic effects are:

σ = Cε − eTE − qTH, (5)

D = eε + κE + ζH, (6)

B = qε + ζTE + λH. (7)

Likewise, those for a piezo-thermoelastic composite are:

σ = Cε − eTE − γ�θ, (8)

D = eε + κE + p�θ, (9)

s = γ · ε + pE + cν�θ̃. (10)

2.2. Compatibility Conditions

Consider an infinite multilayer that is constructed by periodically stacked up a unit
cell of an arbitrary number of layers. The unit cell consisting of N layers taken
from the periodic medium shown in Fig. 1 is considered as a representative volume
element (RVE). The REV is assumed to have layers with thicknesses h1, h2, . . . , hN

in x2 direction. The perfect rigid contact at all interfaces between layers is assumed.
To analyze the effective material constants, the average responses of the RVE to

a uniform in-plane or out-of-plane mechanical load (or other field applications) are
considered. As in the purely elastic multilayers [6], it is established that the average
of any physical variable should satisfy one of the two compatibility conditions. The
first condition is the continuity across the interfaces. When a physical variable (f )
is continuous across the interfaces, the average of the variable is automatically equal
to those of individual layers:

f̄ = f (1) = f (2) = · · · = f (N). (11)
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Figure 1. Representative volume element of a periodic multilayer.

The overbar denotes the average of a physical quantity (e.g., the stress) and the
effective value of a material constant. The second condition is that the average of a
certain physical quantity is determined as the volume-fraction weighted average of
those in all layers:

ḡ = g(1)ν1 + g(2)ν2 + · · · + g(N)νN, (12)

where νi (= hi/h) is the volume fraction of the ith layer and h = (h1 + h2 + · · · +
hN ). For example, the average out-of-plane electric displacement (�D2) is equal to
that in one of the layers since the out-of-plane electric displacement should be con-
tinuous across all interfaces, whereas the average in-plane electric displacements
(�D1, �D3) are the volume fraction weighted average of those in layers. In this way,
it is found that in-plane strain, in-plane electric and magnetic fields, out-of-plane
stress, out-of-plane electric displacement, out-of-plane magnetic induction and the
temperature deviation should satisfy the continuity compatibility, equation (11). It
is also found that out-of-plane strain, out-of-plane electric and magnetic fields, in-
plane stress, in-plane electric displacement, in-plane magnetic induction and the
entropy should satisfy the second compatibility, equation (12).

To apply the matrix formulation that has been developed for effective elastic
constants [6], the above constitutive equations for the ith layer are reassembled
such that physical variables which satisfy the two different compatibility conditions
((11) and (12)) are grouped in respective submatrices:{

τ
(i)
‖

τ
(i)
⊥

}
=

[
D(i)

‖ D(i)
×

T

D(i)
× D(i)

⊥

]{
η

(i)
‖

η
(i)
⊥

}
, (13)

where the submatrices D(i)
‖ ,D(i)

⊥ and D(i)
× are defined as material constants that

relate the in-plane variables (τ (i)
‖ to η

(i)
‖ ), that relate the out-of-plane variables (τ (i)

⊥
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to η
(i)
⊥ ) and that cross-relate the in-plane and the out-of-plane variables (τ (i)

⊥ to η
(i)
‖

and τ
(i)
‖ to η

(i)
⊥ ), respectively. Therefore, the field variable vectors in (13) satisfy the

following conditions:

η̄‖ = η
(1)
‖ = η

(2)
‖ = · · · = η

(N)
‖ , (14)

η̄⊥ = η
(1)
⊥ ν1 + η

(2)
⊥ ν2 + · · · + η

(N)
⊥ νN, (15)

τ̄ ‖ = τ
(1)
‖ ν1 + τ

(2)
‖ ν2 + · · · + τ

(N)
‖ νN, (16)

τ̄⊥ = τ
(1)
⊥ = τ

(2)
⊥ = · · · = τ

(N)
⊥ . (17)

As an example, submatrices in the reassembled constitutive matrix for the
piezoelectric–piezomagnetic material are presented in the followings. Represent-
ing the coupled constitutive equations in a matrix form, (5)–(7) can be written as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ11

σ22

σ33

σ23

σ13

σ12

D1

D2

D3

B1

B2

B3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 C14 C15 C16 e11 e21 e31 q11 q21 q31

C22 C23 C24 C25 C26 e12 e22 e32 q12 q22 q32

C33 C34 C35 C36 e13 e23 e33 q13 q23 q33

C44 C45 C46 e14 e24 e34 q14 q24 q34

C55 C56 e15 e25 e35 q15 q25 q35

C66 e16 e26 e36 q16 q26 q36

−κ11 −κ12 −κ13 −ζ11 −ζ12 −ζ13

SYM −κ22 −κ23 −ζ12 −ζ22 −ζ23

−κ33 −ζ13 −ζ23 −ζ33

−λ11 −λ12 −λ13

−λ22 −λ23

−λ33

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε11

ε22

ε33

ε23

ε13

ε12

−E1

−E2

−E3

−H1

−H2

−H3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(18)

Note that the constitutive matrix is written in a full-matrix form. The subvectors
and submatrices in the reassembled constitutive matrix are:

τ ‖ = {σ11, σ33, σ13,D1,D3,B1,B3}T, (19)

τ⊥ = {σ22, σ12, σ23,D2,B2}T, (20)

η‖ = {ε11, ε33, ε13,−E1,−E3,−H1,−H3}T, (21)

η⊥ = {ε22, ε12, ε23,−E2,−H2}T, (22)

D‖ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

C11 C13 C15 e11 e31 q11 q31
C33 C35 e13 e33 q13 q33

C55 e15 e35 q15 q35
−κ11 −κ13 −ζ11 −ζ13

SYM −κ33 −ζ13 −ζ33
−λ11 −λ13

−λ33

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (23)

D⊥ =

⎡
⎢⎢⎢⎣

C22 C24 C26 e22 q22
C44 C46 e24 q24

C66 e26 q26
SYM −κ22 −ζ22

−λ22

⎤
⎥⎥⎥⎦ , (24)
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D× =

⎡
⎢⎢⎢⎣

C12 C23 C25 e12 e32 q12 q32
C14 C34 C45 e14 e34 q14 q34
C16 C36 C56 e16 e36 q16 q36
e21 e23 e25 −κ12 −κ23 −ζ12 −ζ23
q21 q23 q25 −ζ12 −ζ23 −λ12 −λ23

⎤
⎥⎥⎥⎦ . (25)

2.3. Effective Material Properties

Now we proceed to derive the expressions for the effective material constants in
terms of the material constants of the individual layers from the reassembled con-
stitutive matrix (13) and the compatibility conditions (14)–(17). The constitutive
relation for the effective medium can be expressed as:{

τ̄ ‖
τ̄⊥

}
=

[ �D‖ �DT×�D× �D⊥

]{
η̄‖
η̄⊥

}
. (26)

From (13) and (17), the following relation can be drawn:[
D(i)

× − D(j)
×

]
η̄‖ = −D(i)

⊥ η
(i)
⊥ + D(j)

⊥ η
(j)
⊥ . (27)

Solving a system of linear equations consisting of (15) and (27), the vector η
(i)
⊥ in

the ith layer is obtained as follows:

η
(i)
⊥ = L(i)η̄⊥ − L(i)

N∑
j=1

νj D(j)
⊥

−1[
D(i)

× − D(j)
×

]
η̄‖, (28)

where

L(i) = D(i)
⊥

−1
[

N∑
j=1

νj D(j)
⊥

−1
]−1

. (29)

From (13) and (14), one obtains:

τ̄⊥ = D(i)
× η̄‖ + D(i)

⊥ η
(i)
⊥ . (30)

Substituting (28) into (30), one of the effective material constant submatrices is

�D⊥ =
(

N∑
i=1

νiD
(i)
⊥

−1
)−1

. (31)

Similarly from (13), (14) and (16),

τ̄ ‖ =
N∑

i=1

νiD
(i)
‖ η̄‖ +

N∑
i=1

νiD
(i)
×

T
η

(i)
⊥ . (32)

Substituting (28) into (32), one can obtain the remaining submatrices:

�D‖ =
N∑

i=1

νi

{
D(i)

‖ − D(i)
×

T
L(i)

N∑
j=1

νj D(i)
⊥

−1[
D(i)

× − D(j)
×

]}
, (33)
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and

�D× =
N∑

i=1

νiD
(i)
× L(i)T

. (34)

Therefore, (31), (33) and (34) are the effective material constants of a generally
anisotropic multilayer with coupled piezoelectric, piezomagnetic, thermoelectric
and thermomagnetic effects. Explicit expressions for individual effective properties
can be derived from these matrix equations but are not shown here due to the space
limitation.

3. Examples

3.1. Elastic Multilayer Composites

To give a direct numerical validation of the present method, effective properties
of a purely elastic multilayer, a graphite/epoxy [0/90] laminate composite, are
compared with those calculated by two other approaches that have completely dif-
ferent theoretical foundations: the generalized method of cells (GMC) of Paley and
Aboudi [9] and the dynamic homogenization theory (DHT) of Wang and Rokhlin
[10]. The GMC is a semi-analytical technique that is capable of simulating me-
chanical behaviors of a composite material with an arbitrary microstructure. The
DHT is a dynamical theory for predicting elastic wave propagation in a multiplayer
composite. So, the effective static properties are obtained from the responses of
the medium at a very low frequency. Elastic constants of the transversely isotropic
graphite/epoxy lamina are presented in Table 1. As shown in Table 2, within the
numerical tolerance, the results from the presented method are exactly coincident
with those from the two different approaches, which proves that the present method
and the calculated results are correct. Note that the effective medium exhibits a
tetragonal symmetry that requires six independent elastic constants.

3.2. Piezo-thermoelastic Layers

A piezo-thermoelastic composite that is composed of orthotropic graphite/epoxy
layers and transversely isotropic PZT layers is considered. The graphite/epoxy layer
has a layup of [0/903/0]s. The layer properties are presented also in Table 1. The
overall properties of the graphite/epoxy layer are calculated from the lamina prop-
erties using (31), (33) and (34).

In Figs 2–6, the effective material properties of the PZT-graphite/epoxy com-
posite are shown for varying volume fraction of the PZT layer. It is interesting to
note that some material constants (�C33, κ̄1, κ̄3, ē21, ē23, �P2) have an extremum at a
certain intermediate volume fraction, which is useful in the material design [11]. It
is also observed that only three constants (�C55, �P1, �P3) satisfy the rule of mixture
(volume fraction-weighted average) while the others do not.

That an effective property has an extremum at an intermediate volume fraction is
quite unexpected since the effective property is usually a monotonically increasing
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Table 1.
Physical properties of constituents

Graphite/Epoxy Lamina
C11 = 143.2, C12 = C13 = 7.5, C22 = C33 = 15.8, C23 = 8.2, C55 = 7.0 (GPa)

Graphite/Epoxy [0/903/0/903/0] Layer
C11 = 54.0, C12 = 8.0, C13 = 7.5, C22 = 15.8, C23 = 7.5, C33 = 105.0,
C44 = 5.6, C55 = 7.0, C66 = 4.4 (GPa)
κ11 = κ22 = κ33 = 1.23 × 10−8 (C2/N m2)
γ1 = 7.93 × 106, γ2 = 5.7 × 106, γ3 = 7.48 × 106 (N/K m2)
cν = 4.11 × 108 (N/m2 K2)

PZT
C11 = 120.3, C12 = 65.7, C13 = 75.2, C22 = 110.9, C44 = 21.9 (GPa)
e12 = e13 = 5.4, e22 = −15.1, e61 = −12.7 (C/m2)
κ11 = 1.53 × 10−8, κ22 = 1.46 × 10−8, κ33 = 1.53 × 10−8 (C2/N m2)
γ1 = 1.18 × 106, γ2 = 1.2 × 106, γ3 = 1.18 × 106 (N/K m2)
P1 = 7.5 × 10−4, P2 = −6.2 × 10−4, P3 = 7.5 × 10−4 (C/K m2)
cν = 9.67 × 108 (N/m2 K2)

BaTiO3
C11 = 166.0, C12 = 77.0, C13 = 78.0, C33 = 162.0, C44 = 43.0 (GPa)
e31 = −4.4, e33 = 18.6, e34 = 11.6 (C/m2)
κ11 = 1.12 × 10−8, κ33 = 1.26 × 10−8 (C2/N m2)
λ11 = 5.0 × 10−6, λ33 = 10.0 × 10−6 (N s2/C2)

CoFe2O4
C11 = 286.0, C12 = 173.0, C13 = 170.5, C33 = 269.5, C44 = 45.3 (GPa)
q31 = 580.3, q33 = 699.7, q34 = 550.0 (N/A m)
κ11 = 8.0 × 10−11, κ33 = 9.3 × 10−11 (C2/N m2)
λ11 = −5.9 × 10−4, λ33 = 1.57 × 10−4 (N s2/C2)

Table 2.
Effective elastic constants calculated by the generalized method of cells (GMC), the dynamic homog-
enization theory (DHT) and the present method (unit: GPa)

C11 C33 C12 C23 C44 C66

GMC 79.429 15.800 7.508 7.850 4.926 7.000
DHT 79.427 15.800 7.507 7.853 4.927 7.000
Present 79.428 15.801 7.508 7.851 4.927 7.000

or decreasing function. One possible cause of this behavior is the coupling between
different physical effects. Let us examine this for �C33 in Fig. 2. First, �C33 with-
out the thermal and piezoelectric couplings is calculated and is shown in Fig. 2 as
�CE

33. It is immediately seen that the coupling is not the major cause of the mini-
mum of �C33. Further investigate into this is presented in the Appendix. Based on
the examination in the Appendix, we can make a somewhat restrictive conclusion
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Figure 2. Change of effective elastic constants for varying volume ratio (graphite/epoxy-PZT com-
posite).

Figure 3. Change of effective dielectric constants for varying volume ratio (graphite/epoxy-PZT com-
posite).
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Figure 4. Change of effective piezoelectric coefficients for varying volume ratio (graphite/epoxy-PZT
composite).

Figure 5. Change of effective thermal stress coefficients for varying volume ratio (graphite/
epoxy-PZT composite).
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Figure 6. Change of effective thermoelectric coefficients for varying volume ratio (graphite/
epoxy-PZT composite).

that effective properties of a multilayered composite can have an extremum at an
intermediate volume fraction.

3.3. Piezoelectric–Piezomagnetic Composite

Numerical calculations are also performed for a layered BaTiO3–CoFe2O4 com-
posite. BaTiO3 is the transversely isotropic piezoelectric material and CoFe2O4 is
the transversely isotropic piezomagnetic material. The effective material properties
are calculated for varying BaTiO3 volume fraction. The constituent material con-
stants are shown in Table 1.

From all effective constants that were calculated, only the effective nonzero
piezomagnetic and magnetoelectric (ζ̄33) coefficients (the coupled effects) are
shown in Figs 7 and 8 to avoid repetition. Although both BaTiO3 and CoFe2O4
do not have the magnetoelectric effect on their own as shown in Table 1, the mul-
tilayered composite exhibits a very strong magnetoelectric effect, which will be
very useful in many applications. Similar results have been found in other com-
posite configurations (fibrous and particulate) made of the same constituents [12,
13]. The effective magnetoelectric coefficient has a maximum value at the volume
fraction around 42%. The magnetoelectric coefficients of other types of composite
fabricated with BaTiO3 fibers [12] and ellipsoidal particles [13] in CoFe2O4 matrix
are shown together in Fig. 8. It is interesting that the magnetoelectric coefficient
increases according as the inclusion phase (BaTiO3) becomes more continuous,
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Figure 7. Change of effective piezomagnetic constants for varying volume ratio (BaTiO3–CoFe2O4
composite).

Figure 8. Change of magnetoelectric coefficient for varying volume ratio (BaTiO3–CoFe2O4 com-
posite).
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which seems to be physically reasonable and validates the proposed method and
the calculated results.

The magnetoelectric coefficient of the BaTiO3–CoFe2O4 composite can be de-
rived in an explicit form from (31), (33) and (34):

ζ̄33 = ν1ν2e
(1)
34 q

(2)
34

/(
ν1C

(1)
44 + ν2C

(2)
44

)
, (35)

where 1 and 2 denote BaTiO3 and CoFe2O4 phases, respectively. It can be eas-
ily shown that ζ̄33 has a maximum value between 0 < ν1 < 1 if e

(1)
34 q

(2)
34 > 0,C

(1)
44 >

0,C
(2)
44 > 0, and ν1ν2e

(1)
34 q

(2)
34 � (ν1C

(1)
44 +ν2C

(2)
44 ). The specific location of the max-

imum will depend on the material constants (e(1)
34 , q

(2)
34 ,C

(1)
44 ,C

(2)
44 ) in (35).

Recently, the BaTiO3–CoFe2O4 composite has been fabricated in the form of a
nano film [14], demonstrating the material’s great potential for numerous applica-
tions in nanoscale multifunctional devices.

4. Summary

By extending our previous work on purely elastic multilayers [6], a unified method
is developed for evaluating the effective material properties of generally anisotropic
multilayered media whose constituents exhibit thermoelastic, piezoelectric, piezo-
magnetic effects and coupled effects between these. Examples of applications
are given for the effective properties of the piezoelectric–piezomagnetic BaTiO3–
CoFe2O4 composite and the piezo-thermoelastic PZT-graphite/epoxy composite.
The BaTiO3–CoFe2O4 composite exhibits a remarkably strong magnetoelectric ef-
fect that does not exist in its constituents. It is shown that the magnetoelectric effect
in the multiplayer composite is higher than those in matrix-inclusion type compos-
ites. It is shown that some of the effective properties of a multilayer composite can
have an extremum at an intermediate volume fraction. The present method is es-
sentially valid when the material properties are constant in every layer. However,
the method can be readily applied to a layered composite with continuously vary-
ing material properties (graded composite) by dividing the layers into a sufficiently
large number of sublayers.
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Appendix: The Minimum of �CE
33

Here we investigate if an effective elastic constant of multilayer composites can
have an extremum at a volume fraction other than 0 and 1. To simplify the algebra,
let us consider a purely elastic multilayer composite with two sublayers that have
the orthotropic symmetry. The expression of �CE

33 derived from (31), (33) and (34)
ignoring the thermal and piezoelectric effects is

�CE
33 = ν1C

(1)
33 + ν2C
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33 + F, (A.1)
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. (A.2)

Since the first term in (A.1) is a linear function that does not have an extremum, the
second term is examined. Consider a special case C

(1)
22 ≈ C

(2)
22 , then it can be shown

that the second term is reduced:

F = −C
(1)
23

2

C
(1)
22

ν1(1 − ν1)

(
C

(2)
23

C
(1)
23

− 1

)2

. (A.3)

This function vanishes at ν1 = 0 and ν1 = 1 and has a minimum in 0 < ν1 < 1 with
its magnitude determined by the elastic constants in (A.3). This proves that at least
in this special case the �CE

33 can have a minimum in 0 < ν1 < 1 as shown in Fig. 2.
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