Changes in Biosynthesis of Glutathione and Taurine in Rat Liver Challenged with tert-Butylhydroperoxide

랫트 간에서 tert-Butylhydroperoxide 투여에 의한 글루타치온과 타우린의 생합성 변화

  • Received : 2009.04.01
  • Accepted : 2009.09.29
  • Published : 2009.12.31

Abstract

We examined metabolic conversion of cysteine into glutathione (GSH) and taurine in rat liver under oxidative stress. Administration of tert-butylhydroperoxide (t-BHP) into the portal vein of male rats resulted in a rapid elevation of serum sorbitol dehydrogenase, alanine aminotransferase, and aspartate aminotransferase activities, which decreased gradually in 24 hr. Hepatic cysteine concentration was reduced in 3 hr, and recovered progressively, reaching a level greater than 200% of the normal value in 24 hr. GSH was increased both in liver and blood at 9 hr after t-BHP challenge, whereas hypotaurine or taurine was not altered. $\gamma$-Glutamylcysteine synthetase (GCS) activity was increased from 9 hr after t-BHP treatment, but protein expression of the GCS-heavy subunit was not changed in liver. Activity or expression of cysteine dioxygenase was not affected by t-BHP treatment. Taken together, these data show that an acute oxidant challenge to the rats may induce upregulation of cysteine availability and GCS activity, resulting in an enhancement of hepatic GSH synthesis, but the increased cysteine level does not stimulate taurine synthesis via cysteine sulfinate pathway. It is indicated that the regulation of GSH and taurine biosynthesis from cysteine is not solely dependent on the cysteine concentration in rat liver under oxidative stress.

Keywords

References

  1. Mudd, S. H. and Poole, J. R. : Labile methyl balances for normal humans on various dietary regimens. Metabolism 24, 721 (1975) https://doi.org/10.1016/0026-0495(75)90040-2
  2. Timbrell, J. A., Seabra, V. and Waterfield, C. J. : The in vivo and in vitro protective properties of taurine. Gen. Pharmacol. 26, 453 (1995) https://doi.org/10.1016/0306-3623(94)00203-Y
  3. Lu, S. C. : Regulation of glutathione synthesis. Cur. Top. Cell. Regul. 36, 95 (2000) https://doi.org/10.1016/S0070-2137(01)80004-2
  4. Cooper, A. J. : Biochemistry of sulfur-containing amino acids. Annu. Rev. Biochem. 52, 187 (1983) https://doi.org/10.1146/annurev.bi.52.070183.001155
  5. Meister, A. and Anderson, M. E. : Glutathione. Annu. Rev. Biochem. 52, 711 (1983) https://doi.org/10.1146/annurev.bi.52.070183.003431
  6. Kohashi, N., Yamaguchi, K., Hosokawa, Y., Kori, Y., Fujii, O. and Ueda, I. : Dietary control of cysteine dioxygenase in rat liver. J. Biochem. 84, 159 (1978) https://doi.org/10.1093/oxfordjournals.jbchem.a132104
  7. Stipanuk, M. H., Coloso, R. M., Garcia, R. A. and Banks, M. F. : Cysteine concentration regulates cysteine metabolism to glutathione, sulfate and taurine in rat hepatocytes. J. Nutr. 122, 420 (1992) https://doi.org/10.1093/jn/122.3.420
  8. Stipanuk, M. H. : Role of the liver in regulation of body cysteine and taurine levels: a brief review. Neurochem. Res. 29, 105 (2004) https://doi.org/10.1023/B:NERE.0000010438.40376.c9
  9. Kim, S. K., Seo, J. M., Jung, Y. S., Kwak, H. E. and Kim, Y. C. : Alterations in hepatic metabolism of sulfur-containing amino acids induced by ethanol in rats. Amino Acids 24, 103 (2003)
  10. Kim, S. J., Jung, Y. S., Kwon, D. Y. and Kim, Y. C. : Alleviation of acute ethanol-induced liver injury and impaired metabolomics of S-containing substances by betaine supplementation. Biochem. Biophys. Res. Commun. 368, 893 (2008) https://doi.org/10.1016/j.bbrc.2008.02.003
  11. Kwon, D. Y., Jung, Y. S., Kim, S. J., Park, H. K., Park, J. H. and Kim, Y. C. : Impaired sulfur-amino acid metabolism and oxidative stress in nonalcoholic fatty liver are alleviated by betaine supplementation in rats. J. Nutr. 139, 63 (2009) https://doi.org/10.3945/jn.108.094771
  12. Gerlach, U. E. : Sorbitol dehydrogenase. In Methods in Enzymatic Analysis, Bergmeyer, H.U. (ed.). Vol 3, Verlag Chemie, Weinheim, p. 112 (1983)
  13. Reitman, S. and Frankel, S. A. : Colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Amer. J. Clin. Pathol. 28, 56 (1957) https://doi.org/10.1093/ajcp/28.1.56
  14. Griffith, O. W. : Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal. Biochem. 106, 207 (1980) https://doi.org/10.1016/0003-2697(80)90139-6
  15. Gaitonde, M. K. : A spectrophotometric method for the direct determination of cysteine in the presence of other naturally occurring amino acids. Biochem. J. 104, 627 (1967) https://doi.org/10.1042/bj1040627
  16. Ranjendra, W. : High performance liquid chromatographic determination of amino acids in biological samples by precolumn derivation with o-phthaldialdehyde. J. Liq. Chromatogr. 10, 941 (1987) https://doi.org/10.1080/01483918708066746
  17. Sekura, R. and Meister, A. : γ-Glutamylcysteine synthetase. Further purification, "half of the sites" reactivity, subunits, and specificity. J. Biol. Chem. 252, 2599 (1977)
  18. Yan, C. C. and Huxtable, R. J. : Fluorimetric determination of monobromobimane and o-phthalaldehyde adducts of $\gamma$- glutamylcysteine and glutathione: application to assay of $\gamma$-glutamylcysteinyl synthetase activity and glutathione concentration in liver. J. Chromatogr. B Biomed. Appl. 672, 217 (1995) https://doi.org/10.1016/0378-4347(95)00226-9
  19. Bagley, P. J., Hirschberger, L. L. and Stipanuk, M. H. : Evaluation and modification of an assay procedure for cysteine dioxygenase activity: high-performance liquid chromatography method for measurement of cysteine sulfinate and demonstration of physiological relevance of cysteine dioxygenase activity in cysteine catabolism. Anal. Biochem. 227, 40 (1995) https://doi.org/10.1006/abio.1995.1250
  20. Stipanuk, M. H., Londono, M., Lee, J. I., Hu, M. and Yu, A. F. : Enzymes and metabolites of cysteine metabolism in nonhepatic tissues of rats show little response to changes in dietary protein or sulfur amino acid levels. J. Nutr. 132, 3369 (2002) https://doi.org/10.1093/jn/132.11.3369
  21. Cresenzi, C. L., Lee, J. I. and Stipanuk, M. H. : Cysteine is the metabolic signal responsible for dietary regulation of hepatic cysteine dioxygenase and glutamate cysteine ligase in intact rats. J. Nutr. 133, 2697 (2003) https://doi.org/10.1093/jn/133.9.2697
  22. Rush, G. F., Gorski, J. R., Ripple, M. G., Sowinski, J., Bugelski, F. and Hewitt, W. R. : Organic hydroperoxide-induced lipid peroxidation and cell death in isolated hepatocytes. Toxicol. Appl. Pharmacol. 78, 473 (1985) https://doi.org/10.1016/0041-008X(85)90255-8
  23. Bellomo, G., Jewell, S. A., Thor, H. and Orrenius, S. : Regulation of intracellular calcium compartmentation: studies with isolated hepatocytes and t-butyl hydroperoxide. Proc. Natl. Acad. Sci. USA 79, 6842 (1982) https://doi.org/10.1073/pnas.79.22.6842
  24. Davies, M. J. : Detection of peroxyl and alkoxyl radicals produced by reaction of hydroperoxides with rat liver microsomal fraction. Biochem. J. 257, 603 (1989) https://doi.org/10.1042/bj2570603
  25. Plaa, G. L. and Charbonneau, M. : Detection and evaluation of chemically induced liver injury. In Principles and Methods of Toxicology, Hayes, A. W. (ed.). Raven Press, New York, p. 839 (1994)
  26. Wang, C. J., Wang, J. M., Lin, W. L., Chu, C. Y., Chou, F. P. and Tseng, T. H. : Protective effect of Hibiscus anthocyanins against tert-butyl hydroperoxide-induced hepatic toxicity in rats. Food Chem. Toxicol. 38, 411 (2000) https://doi.org/10.1016/S0278-6915(00)00011-9
  27. Fernandez-Checa, J. C., Ookhtens, M. and Kaplowitz, N. : Effects of chronic ethanol feeding on rat hepatocytic glutathione. Relationship of cytosolic glutathione to efflux and mitochondrial sequestration. J. Clin. Invest. 83, 1247 (1989) https://doi.org/10.1172/JCI114008
  28. Kadiiska, M. B., Gladen, B. C., Baird, D. D., Dikalova, A. E., Sohal, R. S., Hatch, G. E., Jones, D. P., Mason, R. P. and Barrett, J. C. : Biomarkers of oxidative stress study: are plasma antioxidants markers of $CCl_{4}$ poisoning? Free Radic. Biol. Med. 28, 838 (2000) https://doi.org/10.1016/S0891-5849(00)00198-2
  29. Choi, D. W., Kim, S. Y., Kim, S. K. and Kim, Y. C. : Factors involved in hepatic glutathione depletion induced by acute ethanol administration. J. Toxicol. Environ. Health A. 60, 459 (2000) https://doi.org/10.1080/00984100050079520
  30. Kim, S. J., Kwon, D. Y., Choi, K. H., Choi, D. W. and Kim, Y. C. : Impaired metabolomics of sulfur-containing substances in rats treated with carbon tetrachloride acutely. Toxicol. Res. 24, 281 (2008) https://doi.org/10.5487/TR.2008.24.4.281
  31. Kaplowitz, N., Aw, T. Y. and Ookhtens, M. : The regulation of hepatic glutathione. Annu. Rev. Pharmacol. Toxicol. 25, 715 (1985) https://doi.org/10.1146/annurev.pa.25.040185.003435
  32. Richman, P. G. and Meister, A. : Regulation of $\gamma$-glutamylcysteine synthetase by nonallosteric feedback inhibition by glutathione. J. Biol. Chem. 250, 1422 (1975)
  33. Seelig, G. F., Simondsen, R. P. and Meister, A. : Reversible dissociation of $\gamma$-glutamylcysteine synthetase into two subunits. J. Biol. Chem. 259, 9345 (1984)
  34. Huang, C. S., Chang, L. S., Anderson, M. E. and Meister, A. : Catalytic and regulatory properties of the heavy subunit of rat kidney $\gamma$-glutamylcysteine synthetase. J. Biol. Chem. 268, 19675 (1993)
  35. Shi, M. M., Kugelman, A., Iwamoto, T., Tian, L. and Forman, H. J. : Quinone-induced oxidative stress elevates glutathione and induces $\gamma$-glutamylcysteine synthetase activity in rat lung epithelial L2 cells. J. Biol. Chem. 269, 26512 (1994)
  36. Rahman, I., Bel, A., Mulier, B., Lawson, M. F., Harrison, D. J., Macnee, W. and Smith, C. A. : Transcriptional regulation of $\gamma$- glutamylcysteine synthetase-heavy subunit by oxidants in human alveolar epithelial cells. Biochem. Biophys. Res. Commun. 229, 832 (1996) https://doi.org/10.1006/bbrc.1996.1888
  37. Takamura, Y., Fatma, N., Kubo, E. and Singh, D. P. : Regulation of heavy subunit chain of $\gamma$-glutamylcysteine synthetase by tumor necrosis factor-a in lens epithelial cells: role of LEDGF/p75. Amer. J. Physiol. Cell Physiol. 290, C554 (2006) https://doi.org/10.1152/ajpcell.00398.2005
  38. Lu, S. C., Huang, Z. Z., Yang, H. and Tsukamoto, H. : Effect of thioactamide on the hepatic expression of $\gamma$-glutamylcysteine synthetase subunits in the rat. Toxicol. Appl. Pharmacol. 159, 161 (1999) https://doi.org/10.1006/taap.1999.8729
  39. Lu, S. C., Huang, Z. Z., Yang, H., Mato, J. M., Avila, M. A. and Tsukamoto, H. : Changes in methionine adenosyltransferase and S-adenosylmethionine homeostasis in alcoholic rat liver. Amer. J. Physiol. Gastrointest. Liver Physiol. 279, G178 (2000) https://doi.org/10.1152/ajpgi.2000.279.1.G178
  40. Lee, J. I., Londono, M., Hirschberger, L. L. and Stipanuk, M. H. : Regulation of cysteine dioxygenase and $\gamma$-glutamylcysteine synthetase is associated with hepatic cysteine level. J. Nutr. Biochem. 15, 112 (2004) https://doi.org/10.1016/j.jnutbio.2003.10.005
  41. Kwon, Y. H. and Stipanuk, M. H. : Cysteine regulates expression of cysteine dioxygenase and $\gamma$-glutamylcysteine synthetase in cultured rat hepatocytes. Amer. J. Physiol. Endocrinol. Metab. 280, E804 (2001) https://doi.org/10.1152/ajpendo.2001.280.5.E804