Design of an Inference Control Process in OLAP Data Cubes

OLAP 데이터 큐브에서의 추론통제 프로세스 설계

  • 이덕성 (숭실대학교 대학원 산업.정보시스템공학과) ;
  • 최인수 (숭실대학교 산업.정보시스템공학과)
  • Published : 2009.05.31

Abstract

Both On-Line Analytical Processing (OLAF) data cubes and Statistical Databases (SDBs) deal with multidimensional data sets. and both are concerned with statistical summarizations over the dimensions of the data sets. However, there is a distinction between the two that can be made. While SDBs are usually derived from other base data, OLAF data cubes often represent directly the base data. In other word, the base data of SDBs are the macro-data, whereas the core cubiod data in OLAF data cubes are the micro-data. The base table in OLAF is used to populate the data cube with values of the measure attribute, and each record in the base tables is used to populate a cell of the core cuboid. The fact that OLAF data cubes mostly represent the micro-data may make some records be absent in the base table. Some cells of the core cuboid remain empty, if corresponding records are absent in the base table. Wang and others proposed a method for securing OLAF data cubes against privacy breaches. They assert that the proposed method does not depend on specific types of aggregation functions. In this paper, however, it is found that their assertion on aggregate functions is wrong whenever any cell of the core cuboid remains empty. The objective of this study is to design an inference control process in OLAF data cubes which rectifying Wang's error.

References

  1. L. Brankovic, M. Miller, P. Horak, and G. wrightson, "Usability of Compromise-Free Statistical Databases for Range Sum Queries", Scientific and Statistical Database Management, pp. 144-154, 1997.
  2. D. Denning and J. Schloerer, "Inference Controls for Statistical Databases", IEEE Computer, Vol. 16, No. 7, pp. 69-82, 1983.
  3. L. Veck, "A Security Mechanism for Statistical Databases", ACM Transactions on Database Systems, Vol. 5, No. 3, pp. 316-338, Sept. 1980. https://doi.org/10.1145/320613.320617
  4. L. Wang, S. Jajodia, and D. Wijesekera, "Preserving Privacy in On-Line Analytical Processing(OLAP)", Springer, pp. 37-51, 2007.
  5. L. Wang, S. Jajodia, and D. Wijesekera, "Preserving Privacy in On-Line Analytical Processing(OLAP)", Springer, pp. 127-131.
  6. Incremental Maintenance for Non-Distributive Aggregate Functions. http://seminars.di.uoa.gr/infosys/palpanas.
  7. J. Gray et al., "Data Cube: A Relational Algorithm Operator Generalizing Group-By, Cross-Tab, and Sub-Totals", Data Mining and Knowledge Discovery, Vol.1, pp. 29-53, 1997. https://doi.org/10.1023/A:1009726021843
  8. 이승현, 이덕성, 최인수, "OLAP 큐브에서의 집계함수 AVG의 적용", 한국컴퓨터정보학회논문지, 제14권, 제1호, 217-228쪽, 2009년 1월.
  9. A. Casali, R. Cicchetti, and L. Lakhal, "Cube Lattices: A Framework for Multidimensional Data Mining", Proceedings of the 3rd SIAM International Conference on Data Mining, SDM, pp. 304-308, 2003.
  10. L. Lakshmanan, J. Pei, and J. Han, "Quotient Cube: How to Summarize the Semantics of Data Cube", Proceedings of the 28th VLDB Conference, 2002.
  11. 유한주, 이덕성, 최인수, "비유일 외래키 조합 복합키 기반의 사실 테이블 모델링과 MDX 쿼리문 작성법", 한국컴퓨터정보학회논문지, 제12권, 제1호, 177-188쪽, 2007년 3월.
  12. 유한주, 최인수, "장바구니 분석용 OLAP 큐브 구조의 설계", 한국컴퓨터정보학회논문지, 제12권, 제4호, 179-189쪽, 2007년 9월.
  13. L. Wang, S. Jajodia, and D. Wijesekera, "Preserving Privacy in On-Line Analytical Processing(OLAP)", Springer, p. 121.
  14. L. Wang, S. Jajodia, and D. Wijesekera, "Securing OLAP Data Cubes Against Privacy Breaches", Proceedings of the 2004 IEEE Symposium in Security and Privacy, 2004.
  15. L. Wang, S. Jajodia, and D. Wijesekera, "Preserving Privacy in On-Line Analytical Processing(OLAP)", Springer, pp. 131-136.
  16. A. Shoshani, "OLAP and Statistical Database: Similarities and Differences", Principles of Database Systems, pp. 185-196, 1997.