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On the Minimax Disparity Obtaining OWA Operator Weights
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Abstract

The determination of the associated weights in the theory of ordered weighted averaging (OWA) operators is one of the
important issue. Recently, Wang and Parkan [Information Sciences 175 (2005) 20-29] proposed a minimax disparity
approach for obtaining OWA operator weights and the approach is based on the solution of a linear program (LP) model
for a given degree of orness. Recently, Liu [International Journal of Approximate Reasoning, accepted] showed that
the minimum variance OWA problem of Fullér and Majlender [Fuzzy Sets and Systems 136 (2003) 203-215] and the
minimax disparity OWA problem of Wang and Parkan always produce the same weight vector using the dual theory of
linear programming. In this paper, we give an improved proof of the minimax disparity problem of Wang and Parkan
while Liu’s method is rather complicated. Our method gives the exact optimum solution of OWA operator weights for all
levels of orness, 0 < o < 1, whose values are piecewise linear and continuous functions of a.
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1. Introduction

Yager [10] introduced a new aggregation technique
based on the ordered weighted averaging(OWA) opera-
tors. An OWA operator of dimension 7 is a mapping
F : R™ — R that has an associated weighting vector W =
(w1, -, w,)T of having the properties wy + - - - + wy, =
1, 0<w; <1, i=1, --,n, and such that

i

Flay, - a,) = Zwiai.

i=1

where b; is the jth largest element of the collection of the
aggregated objects {ay, -, a,}.  In [12], Yager intro-
duced a measure of “orness” associated with the weighting
vector W of an OWA operator, defined as

n—1
n—1

n
orness(W) = Z

=1

Wy,

and it characterizes the degree to which the aggregation is
like an or operation. One important issuc in the theory
of ordered weighted averaging operators is the determina-
tion of the associated weights. A number of approaches
have been suggested for obtaining the associated weights,
i.e., quantifier guided aggregation [11, 12], exponential
smoothing [1] and learning [12]. Another approaches, sug-
gested by O’ Hagan [5], determines a special class of OWA
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operators having maximal entropy of the OWA weights for
a given level of orness; algorithmically it is based on the
solution of a constrained optimization problem. Fullér and
Maijlender [3, 4] showed that the maximum entropy model
could be transformed into a polynomial equation that can
be solved analytically and suggested a minimum variance
approach to obtain the minimal variability OWA weights.
Recently, Hong [6] gave a new proof of the minimum vari-
ance problem. Liu and Chen [7] suggested a parametric
geometric approach that could be used to obtain maximum
entropy weights. Recently, Wang and Parkan [13] proposed
a minimax disparity approach for obtaining OWA operator
weights. They transferred the minimax disparity model to a
linear programming model, obtained weights for some spe-
cial values of orness and proved the dual property of OWA.
Recently, Liu [8] showed that the minimum variance prob-
lem of Fullér and Majlender [4] and the minimax disparity
OWA problem of Wang and Parkan [13] always produce
the same weight vector using the dual theory of linear pro-
gramming [9]. In Section 2, we reconsider the proof of the
minimum variance OWA problem of Fullér and Majlender
[4]. In Section 3, we give an improved proof of the mini-
max disparity OWA problem of Wang and Parkan [13].
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2. Preliminaries

Recently, to obtain minimal variability OWA weights
under given level of orness, Fullér and Majlender [4] con-
sidered the following constrained mathematical program-
ming problem

minimize
" 1 1 k3 1
=3 b B = 13
z:ln ni:l n
subject to
“n—i
T W) = i=a, 0<a<l, (1
orness(W) Zn—lw a, 0<a<1, (1)

i=1
wy+ - Fw, =10<w,i=1,---,n
where E(W) = (w1 +- - -+w,)/n stands for the arithmetic
mean of weights.

We first consider the following disjunctive partition of
unit interval (0, 1) presented in Fullér and Majlender [4]:

n—1 n—1
= U Jr,nUJI,nU U Jl,sa (2)
r=2 s=2
where
12n+r—2 12n+4+r—3
I = (=g ——" 12—,
™ ( 3 n—1 3 n-—1 l
r=2,---n—1
12n -1 1n—-2
J = (1-— - =
L S o L po 2A
1s—1 ls—2
Ji,s = 1+ 71“7 )
L [ 3n—1 3n—1)

s=2,---.,n—1

Suppose that o € J,. ; for some r and s from partition
(2). Such r and s always exist for any « € (0, 1), further-
more, 7 = 1 or s = n should hold. Fullér and Majlender
[4] found that the associated minimal variability weighting
vector is

W*:(Oy ,O,IUT, '7w:70 70)
where
w; = 0ifj¢]{r’s}:{7‘,"~,8}, (3)
2(2 —2)—6(n-—1)(1—
e L MBEroDbn-i-a)

(s—r+1)(s—r-+2)
. _ 6(n—1(l—-a)2(s+2r—4)
s = (s—r4+1(s—r+2) )

* s—7
sS—T

* J—7T . .
w, + S—_;ws Zf J€ I{T+1’5w1}. (6)
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According to (6), we have that w; = a*i+b* fore € I, 4
for some a*, b*. Using formulas (4) and (5) we find

wi,wk e (0,1] &
12s+7r—2
efll—- 1-—
€l 3 n—-1 "7

1s+2r—4

3T BN

Then, it is also easy to check that ¢*i + b* < 0 for
i ¢ I oy Hence, it is considered that Fullér and Majlen-
der [4] proved the following result. Hong {6] also gave a
new simple proof.

Theorem 2.1. ([4, 6]) The optimal weight for the con-
strained optimization problem (1) should satisfy the equa-
tions

. {a*z’—l—b*, ifi€ I =1{r s}

w;
0 elsewhere.

for some a*, b* satisfying a*i + b* < 0 fori ¢ I, ) and
r—=1lors=n.
Here, o* and b* can be obtained as (see [6])

« _ 6B(r+s—2n+2na—2o0)
T (s—r+1)(r—s)(s—r+2)’ (8)

« _ 2[3(r+s){(n—nata)—(2s2+2r>+2rs+s— 7)]

b = > 725 r+1)(r— sj(s r4-2) (9)

a

Then, from the equality w) = a™i +b",1 = r,---,s,
we can get
w}“ =0 if ] ¢ I{T,S},
Kk « _ 2(28+7r—2)—6(n—-1){1-a)
wy =ty b = S e S g
w*=a*s+ b= (n—1)(1—a)—2(s+2r—4)

s (s—r+1)(s—r+2)

Wi = a4t = St 4 € Lo o),

3. Obtaining minimax disparity OWA
operator weights

The approach suggested by Wang and Parkan [13] is
based on the solution of the following constrained mathe-
matical programming problem:

Minimize
Maxie{l,..m_l} \’UJZ — Wiy

subject to

3

orness(W) =

(10)

0<a<l,

wy+ - +w, =1,0<w,t=1,---,n.



On the Minimax Disparity Obtaining OWA Operator Weights

They transferred the minimax disparity model (7) to a
LP model shown below:
Minimize 4,
subject to

i

orness(W) = Z ﬁ;iul =a,0<a <111
n—

i=1
w4+ +w, =1,
Wy —wipy —0<0,i=1,--,n—1
w, — w1 +6>0,i=1,--- n—1
w; > 0,0=1,--,n.

And Wang and Parkan [13] have proven the following
theorem on the LP model (11).

Theorem 3.1. ([13]) For an OWA operator weight vector
W = (w1, -, w,)T determined by the LP (11)
if orness(W)=1, then W = (1,0,---,0)T;
if orness(W) =0, then W = (0,---,0,1)%;
if orness(W)=0.5, then W = (1/n,---,1/n)T.
Liu [8] used the following dual problem of (11):
Maximize w = aA; + Ag,

subjectto A + Ao + pig + p2 <0,

(12)

7

1>\1 + Ao — poi—3  poi—o 4 poi—1 — pog <0,
1=12,---.n—1

A2 = Aon—3 + Aon—2 <0,
2(n—1

)
- Z pi =1,
i—1

<0, i=1,2,---,2(n—1).

3

With the dual theory of linear programming [9], Liu [8]
proved the optimal solution of (10) is also the optimal so-
lution of (12) in the five cases for different orness levels
respectively.

In this paper, we shall give a simple direct proof of the
constrained optimization problem (10) analytically for all
levels of orness, 0 < o < 1.

Let us consider the constrained optimization problem
(10).

Theorem 3.2. The optimal weight for the constrained opti-

mization problem (1) for a given level of & = orness(W)
should satisty the equations

/wfk:{a*i—%bﬂ ifie{r - s}

! 0 elsewhere

where either r = 1 (for 0.5 < a < 1)ors = n ( for
0 < o €0.5), equivalently, w = max{a*i + b*,0}, i =
1,---,n, and hence we have that

Minimize{Maz;c(1 ... n—1y|wi — wig1|} = la’].

Proof. If o = 1, it is clear that w} = a* + 6" = L and 0,
otherwise. Now, by the dual property [13] of OWA opera-
tor to generate OWA operator weights, we may assume that
0.5 < a < 1. Then there exist a*, b* and such that a* < 0
and

w! = mazr{a®i+b",0}, i=1,---,n,
satisfying

Zzwf = n—(n—1a,

i=1

1,0<w!, i=1,---,n.

w
Sui -
i=1
Then we clearly have that
Njaxie{l,---,n—l}‘w; - w;‘k+1| = |a”|
Actually, we show that W* = (w},---,w},0,,---,0) is
the unique optimum solution of the constrained optimiza-

tion problem (10) that satisfies the orness constraint.

Letw;,i =1, ---,n satisfy

Zz’wi n—(n—1)a, (13)
i=1
Zwi = 1,0<w;,t=1,--+,n. (14)
i=1
and suppose that
]Waxie{lﬁ...,n,]}\wi — wlqu‘ < \a*\ (15)

Then we should have that w1 < wj = a* + b*. Assume
that wy > w} = a* 4 b*. Then by (15), we have

*

we > wy — @] > w —|a] = wi +a" = wj

Similarly, by induction, we have that w; > w] for all
i = 3,---,n. Then we have that

n n
E w; > E w; =1,
i=1 i=1

which is contradictory to (14). It follows that w; < wy =
a* 4+ b*.

Now, since w; < wi and 30 w; = > i w = 1,
there exists ig such that w;, > w; and w; < w; for
i=1,---,4y — 1. Then by (15), we have

Wiy > wi, — 0% >, 0] = wf, + @ = w),y, (16)
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Similarly, by induction, we have w; > w; for all ¢ =
1o + 2, - -+, n. Then we have that

mn " n
Ziwi - vaj = ZL(LLZ —wf)
i=1 i=1 i=1
= D ilw —wi)+ Y iw —w))

1<ig i>ig
> Y ilws—wp) +io Y (wi—w))  (17)
i<ig i>ig
= Zi(wi—wf)—iOZ(wifw;k)
1<ig 1<ip
= D (i —do)(w; — w}) >0,
1<1ip

where the second equality comes from the fact that
Diciy (Wi —wy) = = > ., (w; — w]). This means that
S dw; > Yo iwf =n — (n — 1), which is contra-
dictory to (13). It follows that

Minimize{Maz;e (1 ... n_1y|ws — wi1|} = la*].
Now, we show that W™ is the unique feasible solution sat-
isfying

Minimize{Max;c(1,... n—1}|ws — wiy1]} = la™].

Letw;,i =1, --- nsatisfy
Zsz = n—(n-1a,
i=1
n
wi o= 1L,0<w, i=1--,n  (18)
i=1
and suppose that
Mazieq,...p1ylwi — wia| = [a¥]. (19)

If we assume that w; < wj, then we have a contra-
diction by a similar way as in (16) and (17). So we may
assume that w; > wj. Then by (19), we have

wy > wy — 0¥ Zwl — a7 =w] +a" =wi  (20)
Similarly, by induction, we have that w; > w; for all
i =3,---,n. Then by (18)
n
0="> (w; —wj).
i=1
Since w; —w; >0, i =1,2,---,n, we have that w; = w;
forall7 =1,---,n, which completes the proof. U
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4. Numerical example

We consider the same numerical example that illus-
trates the application of the minimax disparity approach as
Wang and Parkan [13] presented. Suppose n = 5. Using
(7)(or see [4]), we find that

ae[%,%) & r=1,8=2,
046[37%) & r=1,s=3,
046[19—2,%) & r=1,s=4,
3 9
‘le(ﬁ’ﬁ) & r=1,8=25,
aé[%,%) & r=2,5=05,
ae(%,%} & r=3,5=05,
aé(o 1] & r=4,8=05.

12712

Let o € [11/12, 12/12) then r = 1,5 = 2. Using for-
mulas (4)-(6), (8) and (9), we have the optimum solution of
OWA operator weights;

a*=7—8a, b* =12a — 10,

wi=da—3, w; =4 4o, wi =wj=w;=0.

The OWA operator weights for all levels of orness
are shown in Table 1, and plotted in Fig.1. Using LP,
Wang and Parkan [13] obtained a series of OWA opera-
tor weights that satisfy different levels of orness : o =
0, 0.1, ---, 0.9, 1. It was shown in Fig.1 [13] that they
are linear functions whose graphs are the straight line con-
necting (k/10, w;(k/10)) to ((k+1)/10, w;((k+1)/10))
between k/10 and (k + 1)/10 where are 2 = 1,---,5 and
k=0, --,9. In fact, when using LP, we do not know that
w;’s are linear between & /10 and (k + 1)/10. But we can
guess they are linear if we try to solve for a large number of
orness levels of orness. However, our method completely
overcomes this problem and gives the exact optimum so-
lution of OWA operator weights for all levels of orness,
0 < o < 1, whose values are piecewise linear and contin-
uous functions of «v. Actually, the graph of OWA operator
weights in Fig.1 of Wang and Parkan [13] is not clear. Ac-
cording to our result, the break points of levels of orness
are o = 1/12, 2/12, 3/12, 9/12, 10/12, 11/12.
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orness(W)=a
' 0 9 10 3 9 2 3 1 2 0 1
W BB (mn) 55a3) (33, 13) (512 Gl (55l
TS 1,2 1,3 1,4 1,5 2,5 3,5 4,5
a* 77§ %8—% %f%a %—%a éf%a %72(1 1 -8«
b* | —10+ 12« f§+4a -1+ 2 2 4% -2+%a -3+8x —4+36a
wi -3+ 4o —¢ T 2« *%4’%& —%4—%—@ 0 0 0
ws 4 - 4o f% %a %a —%) + %a 0 0
wa 0 %—2@ %fé(y ]3 %Jr%a fé+2a 0
wy 0 0 1+§a g+7(y éJréu ] 13 4oy
wg 0 0 0 %—:a Ef%a z — 2 1 —4o
Table I. The OWA operator weights generated by the minmax disparity approach
1 W) —_
ws
iy —_— -
w)
%
.//
r/’
e
U T \ \ \ T \
‘ 2 : - { 1 11 12

Figure 1. The variation of the minimax disparity OWA operator weights.

5. Conclusion

This paper proposed an improvement proof for the so-
lution equivalence of the minimum variance OWA problem
and the minimax disparity OWA problem. Our method give
the exact optimum solution of OWA operator weights for
all levels of orness, 0 < « < 1, whose values are piece-
wise linear and continuous functions of «v. We have illus-
trated the application of our approach by the same numer-
ical example and verified our approach gives more precise
information in generating valid OWA operator weights.
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