Specific Binding of Streptavidin onto the Nonbiofouling Titanium/Titanium Oxide Surface through Surface-Initiated, Atom Transfer Radical Polymerization and Bioconjugation of Biotin

  • Published : 2009.03.25

Abstract

Chemical modification of titanium/titanium oxide (Ti/$TiO_2$) substrates has recently gained a great deal of attention because of the applications of Ti/$TiO_2$-based materials to biomedical areas. The reported modification methods generally involve passive coating of Ti/$TiO_2$ substrates with protein-resistant materials, and poly(ethylene glycol) (PEG) has proven advantageous for bestowing a nonbiofouling property on the surface of Ti/$TiO_2$. However, the wider applications of Ti/$TiO_2$ based materials to biomedical areas will require the introduction of biologically active moieties onto Ti/$TiO_2$, in addition to nonbiofouling property. In this work, we therefore utilized surface-initiated polymerization to coat the Ti/$TiO_2$ substrates with polymers presenting the nonbiofouling PEG moiety and subsequently conjugated biologically active compounds to the PEG-presenting, polymeric films. Specifically, a Ti/$TiO_2$ surface was chemically modified to present an initiator for atom transfer radical polymerization, and poly(ethylene glycol) methacrylate (pEGMA) was polymerized from the surface. After activation of hydroxyl groups of poly(pEGMA) (pPEGMA) with N,N'-disuccinimidyl carbonate, biotin, a model compound, was conjugated to the pPEGMA films. The reactions were confirmed by infrared spectroscopy, X-ray photoelectron spectroscopy, contact angle goniometry, and ellipsometry. The biospecific binding of target proteins was also utilized to generate micropatterns of proteins on the Ti/$TiO_2$ surface.

Keywords

References

  1. D. M. Brunette, P. Tengvall, M. Textor, and P. Thomsen, Titanium in Medicine, Springer-Verlag, New York, 2001
  2. B. D. Boyan, T. W. Hummert, D. D. Dean, and Z. Schwartz, Biomaterials, 17, 137 (1996) https://doi.org/10.1016/0142-9612(96)85758-9
  3. E. F. Leonard, V. T. Turitto, and L. Vroman, Blood in Contact with Natural and Artificial Surfaces, New York Academy of Sciences, New York, 1987, Vol. 516, p 688
  4. T. B. McPherson, H. S. Shim, and K. Park, J. Biomed. Mater. Res., 38, 289 (1997) https://doi.org/10.1002/(SICI)1097-4636(199724)38:4<289::AID-JBM1>3.0.CO;2-K
  5. B. D. Ratner, Titanium in Medicine: Material Science, Surface Science, Engineering, Biological Responses and Medical Applications, Springer-Verlag, Berlin, 2001
  6. J. L. Dalsin, B.-H. Hu, B. P. Lee, and P. B. Messersmith, J. Am. Chem. Soc., 125, 4253 (2003) https://doi.org/10.1021/ja0284963
  7. A. Y. Fadeev and T. J. McCarthy, J. Am. Chem. Soc., 121, 12184 (1999) https://doi.org/10.1021/ja9931269
  8. E. S. Gawalt, M. K. Avaltroni, N. Koch, and J. Schwartz, Langmuir, 17, 5736 (2001) https://doi.org/10.1021/la010649x
  9. S.-J. Xiao, M. Textor, N. D. Spencer, and H. Sigrist, Langmuir, 14, 5507 (1998) https://doi.org/10.1021/la980257z
  10. S. Tosatti, R. Michel, M. Textor, and N. D. Spencer, Langmuir, 18, 3537 (2002) https://doi.org/10.1021/la011459p
  11. N. Adden, L. J. Gamble, D. G. Castner, A. Hoffmann, G. Gross, and H. Menzel, Langmuir, 22, 8197 (2006) https://doi.org/10.1021/la060754c
  12. M. Gnauck, E. Jaehne, T. Blaettler, S. Tosatti, M. Textor, and H.-J. P. Adler, Langmuir, 23, 377 (2007) https://doi.org/10.1021/la0606648
  13. S. Tosatti, S. M. De Paul, A. Askendal, S. VandeVondele, J. A. Hubbell, P. Tengvall, and M. Textor, Biomaterials, 24, 4949 (2003) https://doi.org/10.1016/S0142-9612(03)00420-4
  14. I. Pelsoczi, K. Turzo, C. Gergely, A. Fazekas, I. Dekany, and F. Cuisinier, Biomacromolecules, 6, 3345 (2005) https://doi.org/10.1021/bm050360k
  15. F. F. Rossetti, M. Bally, R. Michel, M. Textor, and I. Reviakine, Langmuir, 21, 6443 (2005) https://doi.org/10.1021/la0509100
  16. F. F. Rossetti, M. Textor, and I. Reviakine, Langmuir, 22, 3467 (2006) https://doi.org/10.1021/la053000r
  17. X. Fan, L. Lin, J. L. Dalsin, and P. B. Messersmith, J. Am. Chem. Soc., 127, 15843 (2005) https://doi.org/10.1021/ja0532638
  18. X. Fan, L. Lin, and P. B. Messersmith, Biomacromolecules, 7, 2443 (2006) https://doi.org/10.1021/bm060276k
  19. V. Zoulalian, S. Monge, S. Zurcher, M. Textor, J. J. Robin, and S. Tosatti, J. Phys. Chem. B, 110, 25603 (2006)
  20. B. S. Lee, J. K. Lee, W.-J. Kim, Y. H. Jung, S. J. Sim, J. Lee, and I. S. Choi, Biomacromolecules, 8, 744 (2007) https://doi.org/10.1021/bm060782+
  21. B. S. Lee, Y. S. Chi, K.-B. Lee, Y.-G. Kim, and I. S. Choi, Biomacromolecules, 8, 3922 (2007) https://doi.org/10.1021/bm7009043
  22. Y.-P. Kim, B. S. Lee, E. Kim, I. S. Choi, D. W. Moon, T. G. Lee, and H.-S. Kim, Anal. Chem., 80, 5094 (2008) https://doi.org/10.1021/ac800299d
  23. Y. S. Chi, H. R. Byon, B. S. Lee, B. Kong, H. C. Choi, and I. S. Choi, Adv. Funct. Mater., 18, 3395 (2008) https://doi.org/10.1002/adfm.200800471
  24. It has to be noted that a very similar approach to the functionalization of Ti/TiO2 was reported during the preparation of our manuscript. They used a chlorosilane-based initiator, 11-(2-bromo-2-methyl)propionyloxy)undecenyldimethylchlorosilane, and activated the hydroxyl group with 4-nitrophenyl chloroformate: J. E. Raynor, T. A. Petrie, A. J. García, and D. M. Collard, Adv. Mater., 19, 1724 (2007). In this work, we used a catechol-based initiator and activated the hydroxyl group with N,N'-disuccinimidyl carbonate by adopting our previously reported method https://doi.org/10.1002/adma.200602129
  25. E. S. Gawalt, M. J. Avaltroni, M. P. Danahy, B. M. Silverman, E. L. Hanson, K. S. Midwood, J. E. Schwarzbauer, and J. Schwartz, Langmuir, 19, 200 (2003) https://doi.org/10.1021/la0203436
  26. P. Kingshott, H. Thissen, and H. J. Griesser, Biomaterials, 23, 2043 (2002) https://doi.org/10.1016/S0142-9612(01)00334-9
  27. Y. K. Son, J. H. Kim, Y. S. Jeon, and D. J. Chung, Macromol. Res., 15, 527 (2007) https://doi.org/10.1007/BF03218826
  28. S. Y. Kim, S. H. Cho, Y. M. Lee, and L.-Y. Chu, Macromol. Res., 15, 646 (2007) https://doi.org/10.1007/BF03218945
  29. W. J. Kim and S. W. Kim, Macromol. Res., 15, 100 (2007) https://doi.org/10.1007/BF03218760
  30. J. M. Harris, Poly(ethylene glycol) Chemistry: Biotechnical and Biomedical Applications, Plenum Perss, New York, 1992
  31. J.-B. Kim, M. L. Bruening, and G. L. Baker, J. Am. Chem. Soc., 122, 7616 (2000) https://doi.org/10.1021/ja001652q
  32. Y.-W. Lee, S. M. Kang, K. R. Yoon, S.-P. Hong, B.-c. Yu, Y. S. Chi, H.-j. Paik, W. S. Yun, and I. S. Choi, Macromol. Res., 13, 356 (2005) https://doi.org/10.1007/BF03218466
  33. A. Hasneen, S. J. Kim, and H.-J. Paik, Macromol. Res., 15, 541 (2007) https://doi.org/10.1007/BF03218828
  34. S. T. Martin, J. M. Kesselman, D. S. Park, N. S. Lewis, and M. R. Hoffmann, Environ. Sci. Technol., 30, 2535 (1996) https://doi.org/10.1021/es950872e
  35. J. Lahann, M. Balcells, T. Rodon, J. Lee, I. S. Choi, K. F. Jensen, and R. Langer, Langmuir, 18, 3632 (2002) https://doi.org/10.1021/la011464t
  36. D. O. H. Teare, W. C. E. Schofield, R. P. Garrod, and J. P. S. Badyl, J. Phys. Chem. B, 109, 20923 (2005) https://doi.org/10.1021/jp052767p
  37. S. Jon, J. Seong, A. Khademhosseini, T.-N. T. Tran, P. E. Laibinis, and R. Langer, Langmuir, 19, 9989 (2003) https://doi.org/10.1021/la034839e