Formation of Poly(ethylene glycol)-Poly($\varepsilon$-caprolactone) Nanoparticles via Nanoprecipitation

  • Lee, Jae-Sung (Department of Polymer Science & Engineering, Sungkyunkwan University) ;
  • Hwang, Su-Jong (Department of Polymer Science & Engineering, Sungkyunkwan University) ;
  • Lee, Doo-Sung (Department of Polymer Science & Engineering, Sungkyunkwan University) ;
  • Kim, Sung-Chul (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology) ;
  • Kim, Duk-Joon (Department of Chemical Engineering, Sungkyunkwan University)
  • Published : 2009.02.25

Abstract

Size control of therapeutic carriers in drug delivery systems has become important due to its relevance to biodistribution in the human body and therapeutic efficacy. To understand the dependence of particle size on the formation condition during nanoprecipitation method, we prepared nanoparticles from biodegradable, amphiphilic block copolymers and investigated the particle size and structure of the resultant nanoparticles according to various process parameters. We synthesized monomethoxy poly(ethylene glycol)-poly($\varepsilon$-caprolactone) block copolymer, MPEG-PCL, with different MPEG/PCL ratios via ring opening polymerization initiated from the hydroxyl end group of MPEG. Using various formulations with systematic change of the block ratio of MPEG and PCL, solvent choice, and concentration of organic phase, MPEG-PCL nanoparticles were prepared through nanoprecipitation technique. The results indicated that (i) the nanoparticles have a dual structure with an MPEG shell and a PCL core, originating from self-assembly of MPEG-PCL copolymer in aqueous condition, and (ii) the size of nanoparticles is dependent upon two sequential processes: diffusion between the organic and aqueous phases and solidification of the polymer.

Keywords

References

  1. H. Pihlajamaki, O. Bostman, O. Tynninen, and O. Laitinen, Bone, 39, 932 (2006) https://doi.org/10.1016/j.bone.2006.04.009
  2. O. Laitinen, H. Pihlajamaki, A. Sukura, and O. Bostman, J. Biomed. Mater. Res., 61, 33 (2002) https://doi.org/10.1002/jbm.10115
  3. Q. Huang, D. W. Hutmacher, and E. H. Lee, Tissue Eng., 8, 469 (2002) https://doi.org/10.1089/107632702760184727
  4. R. C. Edwards, K. D. Kiely, and B. L. Eppley, J. Oral Maxil. Surg., 59, 19 (2001) https://doi.org/10.1053/joms.2001.19267
  5. H. Yoshimoto, Y. M. Shin, H. Terai, and J. P. Vacanti, Biomaterials, 24, 2077 (2003) https://doi.org/10.1016/S0142-9612(02)00635-X
  6. Y. Z. Zhang, Z. M. Huang, X. J. Xu, C. T. Lim, and S. Ramakrishna, Chem. Mater., 16, 3406 (2004) https://doi.org/10.1021/cm049580f
  7. V. J. Chen, L. A. Smith, and P. X. Ma, Biomaterials, 27, 3973 (2006)
  8. H. W. Ouyang, S. L. Toh, J. Goh, T. E. Tay, and K. Moe, J. Biomed. Mater. Res. B, 75B, 264 (2005)
  9. W. J. Li, C. T. Laurencin, E. J. Caterson, R. S. Tuan, and F. K. Ko, J. Biomed. Mater. Res., 60, 613 (2002) https://doi.org/10.1002/jbm.10167
  10. W. J. Li, C. T. Laurencin, E. J. Caterson, R. S. Tuan, and F. K. Ko, J. Biomed. Mater. Res., 60, 613 (2002) https://doi.org/10.1002/jbm.10167
  11. C. T. Lee, C. P. Huang, and Y. D. Lee, Biomacromolecules, 7, 2200 (2006) https://doi.org/10.1021/bm060451x
  12. R. T. Liggins and H. M. Burt, Int. J. Pharm., 222, 19 (2001) https://doi.org/10.1016/S0378-5173(01)00690-1
  13. F. X. Hu, K. G. Neoh, and E. T. Kang, Biomaterials, 27, 5725 (2006) https://doi.org/10.1016/j.biomaterials.2006.07.014
  14. H.Y. Lee, S. A. Yu, K. H. Jeong, and Y. J. Kim, Macromol. Res., 15, 547 (2007) https://doi.org/10.1007/BF03218829
  15. T. Govender, S. Stolnik, M. C. Garnett, L. Illum, and S. S. Davis, J. Control. Release, 57, 171 (1999) https://doi.org/10.1016/S0168-3659(98)00116-3
  16. H. Zhang and S. Gao, Int. J. Pharm., 329, 122 (2007) https://doi.org/10.1016/j.ijpharm.2006.08.027
  17. X. B. Xiong, A. Mahmud, H. Uludag, and A. Lavasanifar, Biomacromolecules, 8, 874 (2007) https://doi.org/10.1021/bm060967g
  18. C. Allen, Y. S. Yu, D. Maysinger, and A. Eisenberg, Bioconjugate Chem., 9, 564 (1998) https://doi.org/10.1021/bc9702157
  19. G. Z. Zhu, S. R. Mallery, and S. P. Schwendeman, Nat. Biotechnol., 18, 52 (2000) https://doi.org/10.1038/71916
  20. M. Lee, T. T. Chen, M. L. Iruela-Arispe, B. M. Wu, and J. C. Y. Dunn, Biomaterials, 28, 1862 (2007) https://doi.org/10.1016/j.biomaterials.2006.12.006
  21. E. Walter, K. Moelling, J. Pavlovic, and H. P. Merkle, J. Control. Release, 61, 361 (1999) https://doi.org/10.1016/S0168-3659(99)00151-0
  22. H. Cohen, R. J. Levy, J. Gao, I. Fishbein, V. Kousaev, S. Sosnowski, S. Slomkowski, and G. Golomb, Gene Ther., 7, 1896 (2000) https://doi.org/10.1038/sj.gt.3301318
  23. X. D. Yuan, L. Li, A. Rathinavelu, J. S. Hao, M. Narasimhan, M. He, V. Heitlage, L. Tam, S. Viqar, and M. Salehi, J. Nanosci. Nanotechno., 6, 2821 (2006) https://doi.org/10.1166/jnn.2006.436
  24. J. H. You, S. W. Choi, J. H. Kim, and Y. T. Kwak, Macromol. Res., 16, 609 (2008) https://doi.org/10.1007/BF03218568
  25. S. R. Bhattarai, N. Bhattarai, H. K. Yi, P. H. Hwang, D. I. Cha, and H. Y. Kim, Biomaterials, 25, 2595 (2004) https://doi.org/10.1016/j.biomaterials.2003.09.043
  26. S. J. Im, Y. M. Choi, E. Subramanyam, K. M. Huh, and K. Park, Macromol. Res., 15, 363 (2007) https://doi.org/10.1007/BF03218800
  27. C. Choi, M. Jang, and J. Nah, Macromol. Res., 15, 623 (2007) https://doi.org/10.1007/BF03218942
  28. C. Deng, H. Y. Tian, P. B. Zhang, J. Sun, X. S. Chen, and X. B. Jing, Biomacromolecules, 7, 590 (2006) https://doi.org/10.1021/bm050678c
  29. C. Park, M. Rhue, J. Lim, and C. Kim, Macromol. Res., 15, 39 (2007) https://doi.org/10.1007/BF03218750
  30. S. C. Lee, C. Kim, I. C. Kwon, H. Chung, and S. Y. Jeong, J. Control. Release, 89, 437 (2003) https://doi.org/10.1016/S0168-3659(03)00162-7