Species Diversity of Chironomid Midge and Evaluation on Removal Capacity of Organic Matter Using a Dominant Species, Chironomus nipponensis in Agroecosystem

농업생태계 깔따구 유충의 다양성 및 우점종 닙폰깔따구를 이용한 유기물 분해능 평가

  • Sim, Ha-Sik (Division of Legume & Oil Crop Research, National Institute of Crop Science, RDA) ;
  • Park, Byoung-Do (Division of Applied Entomology, National Academy of Agricultural Science (NAAS)) ;
  • Lee, Young-Bo (Division of Applied Entomology, National Academy of Agricultural Science (NAAS)) ;
  • Choi, Young-Chol (Division of Applied Entomology, National Academy of Agricultural Science (NAAS)) ;
  • Kim, Jong-Gil (Division of Applied Entomology, National Academy of Agricultural Science (NAAS)) ;
  • Park, Hae-Chul (Division of Applied Entomology, National Academy of Agricultural Science (NAAS))
  • 심하식 (국립식량과학원 기능성작물부 두류유지작물과) ;
  • 박병도 (국립농업과학원 농업생물부 곤충산업과) ;
  • 이영보 (국립농업과학원 농업생물부 곤충산업과) ;
  • 최영철 (국립농업과학원 농업생물부 곤충산업과) ;
  • 김종길 (국립농업과학원 농업생물부 곤충산업과) ;
  • 박해철 (국립농업과학원 농업생물부 곤충산업과)
  • Published : 2009.02.28

Abstract

To recognize the species composition and community of chironomid midge in agroecosystem and evaluate removal capacity of organic matter using the dominant species among them. Chironomid midge and invertebrate cohabitants were quantitatively collected at 78 representative stations of five habitat types (in arable land during 2004$\sim$2006) A, paddy fields of the large scale arable land; B, paddy fields of the environmental friendly arable land; C, influent of domestic waste water; D, influent of waste water by livestock; E, the irrigation ditch of paddy area. The total sixteen species of chironomid midges at arable land were presented. And also chironomid midges were recognized by five habitat types: eleven species in D, eight in A, seven in E, six in B, and two in C. We confirmed dominant species in each habitat types as followings: Chironomus nipponensis in A, C, and D; Cricotopus sylvestris in E; Tanytarsus seosanensis in B. Water quality and community index were high in E, but low in A, B, C, and D. Comparing with non-treatment, removal activities of organic matter in bottom by C. nipponensis were increased 18% in 90 individuals treatment.

농업생태계의 환경별로 깔따구류의 분포를 밝히고 우점종을 이용한 유기물 분해능을 평가하고자 대단위경작지, 친환경농업지, 생활하수 유입지, 축산폐수 유입지 및 주변수로 등의 5개 서식처별로 나누어 '04$\sim$'06년까지 각 구획을 대표하는 총 78개 지점에서 깔따구과 및 공서 무척추동물을 정량 채집하였다. 그 결과, 농업지대의 깔따구류는 총 16종으로 동정되었다. 서식지 유형별로 출현한 종수를 보면, 축산폐수 유입지에서 11종, 대단위 농경지는 8종, 농경지 주변수로는 7종, 친환경농업지는 6종, 생활하수 유입지는 2종으로 조사되었다 구획별로 나타난 우점종을 보면, 유기물의 농도가 높은 대단위경작지(A), 생활하수 유입지(C) 및 축산폐수 유입지(D)에서는 닙폰깔따구(C. nipponensis), 유기물 함량이 낮은 주변수로(E)에서는 숲아기깔따구(C. sylvestris), 친환경농업지(B)에서는 서산장부깔따구(Tanytarsus sesanensis)였다. 수질과 군집지수는 논주변의 수로에서 높았고, 대단위 경작지, 친환경농업지, 생활하수 유입지, 축산폐수 유입지는 낮은 수준으로 조사되었다. 저질내에서 닙폰깔따구의 유기물 제거능력은 무처리구와 대비하여 90개체 처리구에서 18% 증가하였다.

Keywords

References

  1. 권오길, 박갑만, 이준상. 1993. 원색 한국패류도감. 아카데미서적. 445pp
  2. 농엽과학기술원. 2006. 농업용수수질분석 이론과 실무. 농촌진흥청. 273pp
  3. 박해심, 유남수, 조동일, 김재원. 1991. 두 가지 칼따구 (Chironomidae)에 의한 기관지 천식 2례, 알레르기. 11:362-367
  4. 여천생태연구회. 1997. 현대생태학실험서. 교문사. 286pp
  5. 윤일병. 1988. 한국동식물도감 동물편(수서곤충류). 문교부. 840pp
  6. 윤일병. 1995. 수서곤충검색도설. 정행사. 262pp
  7. Armitage PD'PS Cranton and LCV Pinder. 1995. The Chironomidae. Chapman & Hall, London. 572pp
  8. Cranston PS. 1995. The Chironomidae : The biology and ecology of non-biting midges. pp.31-61. ln Systematìcs (Armitage PD, Cranston PS and LC Pinder eds.). Chapman and Hall. London
  9. Frouz J, RJ Lobinskel and A Alli. 2004. Influence of Chironomidae (Diptera) faecal pellet accumulation on lake sediment quality and larval abundance of pestiferous midge Glyptotendipes paripes. Hydrobiologia 518:169-177 https://doi.org/10.1023/B:HYDR.0000025066.62554.7e
  10. Igarashi T, G Murakami, Y Adachi, M Matsuo, Y Sacki, T Okada, K Kawai, A Kumagai and M Sasa. 1987. Common occurrence in Toyama of bronchial asthma induced by Chironomidae midges. Jap. J. Exp. Med. 57: 1
  11. Kim JY, JH Lee and Hl Ree. 2001. Seasonal population dynamics of Chironomid midges (Diptera: Chironomidae) emerging from reclaimed rice fields in Seosan, Korea in 1997-1999. Korean J. Entomol. 31:225-232
  12. Kong D. 1997. LimnoJogical and ecological characteristics of a river-reservoir (Paldang), Korea. Special Issue, J. Kor. Limnol. 30 (Suppl.):524-535
  13. Macchiusi F and RL Baker. 1991. Prey behaviour and size selective predation by fish. Freshwater Biology. 25:533-538 https://doi.org/10.1111/j.1365-2427.1991.tb01396.x
  14. Margalef DR. 1958. Information theory in ecology. Gen. Syst. 3:36-71
  15. McLarney WO. S Henderson and MM Shermana. 1974. New method for culturing Chironomus tentans Fabricius larvae using burlap substrate in fertilized pools. Aquaculture 4:267-276 https://doi.org/10.1016/0044-8486(74)90039-8
  16. McNaughton SJ. 1967. Relationship among functional properties of California Glassland. Nature 216:168-144
  17. Na KB. 2005. Taxonomy of the Chironomidae (Diptera, Insecta) in Seoul-Gyeonggi area, Korea. The thesis of Master degree in Seoul Women's University. 81pp
  18. Pielou EC. 1969. Shannon's formula as a measure of specific diversity: its use and misuse. Amer. Nat. 100:463-465
  19. Pielou EC. 1975. Ecological diversity. Wiley, New York. 165pp
  20. Rae JG. 1989. Chironomid midges as indicators of organic pollution in the Sciotio River Basin Ohio. The Ohio Journal of Science 89:5-9
  21. Ree HI and JY Kim. 1998. A new species of the genus Cricotopus (Diptera:Chironomidae), a pest of rice in Seosan, Korea. Korean J. Biol. Sci. 2:309-313 https://doi.org/10.1080/12265071.1998.9647424
  22. Ree HI. 1993. Breeding places of Non-biting Midges (Chironomidae, Diptera) in Kore, Korean J. Entomol. 23:169-176
  23. Saether OA. 1979. Chironomid communities as water quality indicator. Holarctic Ecology 2:65-74
  24. Shaw PC and KK Mark. 1980. Chironomid farming-A means of recycling farm manure and potentially reducing water pollution in Hong Kong. Aquaculture 21:155-163 https://doi.org/10.1016/0044-8486(80)90024-1
  25. Sokolova N, AV Ju and ET Izvekova. 1993. Biology of Chironomus piger Str. and its role in the self-purification of the river. Netherlands journal of Aquatic Ecology 26:509-512 https://doi.org/10.1007/BF02255283
  26. Tsumuraya T, K Moriya, T Matsumoto and T Mori. 1982. The ecology and control of Chironomus yoshimatsui in the sewage water treatment plant. Yosui to Haisui. 24:1356-1362
  27. Way MO and RG Wallace. 1989. First record of midge to rice in Texas. Southwestern Entomologist 14:27-33
  28. Wotton RS. 2004. Water purification using sand. Hydrobiologia 469:193-201 https://doi.org/10.1023/A:1015503005899
  29. Wotton RS and K Hirabayashi. 1999. Midge larvae (Diptera:Chironomidae) as engineers in slow sand filter bed. Wat. Res. 33:1509-1515 https://doi.org/10.1016/S0043-1354(98)00336-4
  30. Yamashita N, K Ito, T Nakagawa, M Haida, H Okudaira, S Nakada, T Miyamoto, T Shibuya, K Kamei and M Sasa. 1987. IgG and IgE antibodies to Chironomidae in asthetic patients. Clin Exp Immunol. 68:93
  31. Yamashita N, Y Motita, K Ito, T Miyamoto, T Shibuya, K Kamei and M Sasa. 1989. Chironomidae as a use of IgE-medicated histamin release in patients with asthma. Ann Allergy 63: 154
  32. 津田松苗. 1962. 水生昆蟲學. 北隆館. 269pp
  33. 川合楨次. 1985. 日本産水生昆蟲檢索圖說. 東海大學出版會. 409pp