DOI QR코드

DOI QR Code

Effect of Graphitized Carbon Supports on Electrochemical Carbon Corrosion in Polymer Electrolyte Membrane Fuel Cells

탄소 담지체의 결정성에 따른 고분자전해질형 연료전지의 내구성 평가 연구

  • Oh, Hyung-Suk (Specialized Graduate School of Hydrogen & Fuel Cell Yonsei University) ;
  • Sharma, Raj Kishore (Dept. of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Haam, Seung-Joo (Dept. of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Lee, Chang-Ha (Dept. of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Kim, Han-Sung (Specialized Graduate School of Hydrogen & Fuel Cell Yonsei University)
  • 오형석 (수소연료전지 특성화 대학원) ;
  • ;
  • 함승주 (연세대학교 화공생명공학과) ;
  • 이창하 (연세대학교 화공생명공학과) ;
  • 김한성 (수소연료전지 특성화 대학원)
  • Published : 2009.05.30

Abstract

The influence of graphitization of carbon support on the electrochemical corrosion of carbon and sintering of Pt particles are investigated by measuring $CO_2$ emission at a constant potential of 1.4 V for 30 min using on-line mass spectrometry and cyclic voltammogram. In comparison to commercial Pt/C (from Johnson Matthey), highly graphitized carbon nanofiber (CNF) supported Pt catalyst exhibits lower performance degradation and $CO_2$ emission. As the more carbon corrosion occurred, the more prominent changes were detected in electrochemical characteristics of fuel cell. This indicates that the carbon corrosion affects significantly the fuel cell durability. From the observed results, CNF is considered to be more corrosion resistant material as a catalyst support. However, CNF shows higher aggregation of Pt particles under repeated cyclic voltammetry between 0 and 0.8 V where the carbon corrosion is not initiated.

탄소 담지체의 결정도와 형태가 전기화학적 부식특성과 입자뭉침 현상에 미치는 영향을 평가하기 위해서on-line mass spectrometry와 cyclic voltammogram(CV)법을 사용하였다. 부식실험은 단위 전지형태에서1.4 V의 정전압 조건으로 30분간 시행되었으며 이 때 발생한 $CO_2$ 의 양을 on-line mass spectrometry로 측정하였다. 실험 결과 결정성이 높은 carbon nanofiber (CNF)를 사용한 Pt/CNF 촉매가 결정도가 낮은 담지체를 사용한 상용 Pt/C 촉매보다 $CO_2$ 발생량이 적어 전기화학적 부식에 대한 저항성이 큰 것으로 나타났다. 부식실험 전후의 임피던스와 CV측정에서도 탄소 부식의 영향이 적은 Pt/CNF에서 그 변화가 크지 않은 것으로 관찰되었다. 이러한 결과는 탄소 부식이 고분자 전해질형 연료전지(PEMFC)의 내구성을 결정하는 중요한 요소임을 보여준다. 하지만 탄소 부식이 영향을 미치지 않는 조건에서 실시한 반복 CV 실험 결과 촉매 입자 이동에 의한 뭉침현상은 Pt/CNF에서 더 큰 것으로 나타났다.

Keywords

References

  1. R. Borup, J. Meyers, B. Pivovar, Y. S. Kim, R. Mukundan, N. Garland, D. Myers, M. Wilson, and F. Garzon, 'Scientific Aspects of Polymer Electrolyte Fuel Cell Durability and Degradation' Chem. Rev. 107, 3904 (2007) https://doi.org/10.1021/cr050182l
  2. H. A. Gasteiger, S. S. Kocha, B. Sompalli, and F. T. Wagner, 'Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs' Appl. Catal. B, 56, 9 (2005) https://doi.org/10.1016/j.apcatb.2004.06.021
  3. C. H. Paik, T. D. Jarvi, and W. E. O'grady, 'Extent of EMFC Cathode Surface Oxidation by Oxygen and ater Measured by CV' Electrochem. Solid-State Lett. 7, A82 (2004) https://doi.org/10.1149/1.1649698
  4. P. J. Ferreira, G. J. La O, Y. S. Horn, D. Morgan, R. Makharia, S. Kocha, H. A. Gasteiger, 'Instability of Pt/C Electrocatalysts in Proton Exchange Membrane Fuel Cells' J. Electrochem. Soc. 152, A2256 (2005) https://doi.org/10.1149/1.2050347
  5. X. Wang, R. Kumar, and D. J. Myers, 'Effect of Voltage on Platinum Dissolution' Electrochem. Solid-State Lett. 9, A255 (2006) https://doi.org/10.1149/1.2180536
  6. M. Pourbaix, 'Atlas Electrochemical Equibria in Aqueous Solutions', 379, National Association of Corrosion Engineers, New York (1974)
  7. E. Guilminot, A. Corcella, F. Charlot, F. Maillard, and M. Chatenet, 'Membrane and Active Layer Degradation upon PEMFC Steady-State Operation' J. Electrochem. Soc. 154, B1106 (2007) https://doi.org/10.1149/1.2775218
  8. A. V. Virkar and Y. Zhou, 'Mechanism of Catalyst Degradation in Proton Exchange Membrane Fuel Cells' J. Electrochem. Soc. 154, B540 (2007) https://doi.org/10.1149/1.2722563
  9. C. A. Reiser, L. Bregoli, T. W. Patterson, J. S. Yi, J. D. Yang, M. L. Perry, and T. D. Jarvi, 'A Reverse-Current Decay Mechanism for Fuel Cells' Electrochem. Solid-State Lett. 8, A273 (2005) https://doi.org/10.1149/1.1896466
  10. S. D. Knights and K. M. Colbow, J. St-Pierre, D. P. Wikinson, 'Aging mechanisms and lifetime of PEFC and DMFC' J. Power Sources, 127, 127 (2004) https://doi.org/10.1016/j.jpowsour.2003.09.033
  11. K. H. Kangasniemi, D. A. Condit, and T. D. Jarvi, 'Characterization of Vulcan Electrochemically Oxidized under Simulated PEM Fuel Cell Conditions' J. Electochem. Soc. 151, E125 (2004) https://doi.org/10.1149/1.1649756
  12. Y. Shao, G. Yin, and Y Gao, 'Understanding and approaches for the durability issues of Pt-based catalysts for PEM fuel cell' J. Power Sources, 171, 558 (2007) https://doi.org/10.1016/j.jpowsour.2007.07.004
  13. T. W. Patterson and R. M. Darling, 'Damage to the Cathode Catalyst of a PEM Fuel Cell Caused by Localized Fuel Starvation' Electrochem. Solid-State Lett. 9, A183 (2006) https://doi.org/10.1149/1.2167930
  14. C. Reiser. 'Procedure for starting up a fuel cell system using a fuel purge', US2002/0076582 A1, June 20, (2002)
  15. H. Tang, Z. Qi, M. Ramani, and J. F. Elter, 'PEM fuel cell cathode carbon corrosion due to the formation of air/fuel boundary at the anode' J. Power Sources, 158, 1306 (2006) https://doi.org/10.1016/j.jpowsour.2005.10.059
  16. Y. Siyu, H. Miho, and H. Ping, 'PEM Fuel Cell Catalysts: The Improtance of Catalyst Support' ECS Transactions, 16, 2101 (2008) https://doi.org/10.1149/1.2982050
  17. L. Li and Y. Xing, 'Electrochemical Durability of Carbon Nanotubes in Nanocatalyzed and Catalyzed Oxidations' J. Electrochem. Soc. 153, A1823 (2006) https://doi.org/10.1149/1.2234659
  18. L. Li and Y. Xing, 'Electrochemical durability of carbon nanotubes at 80${^{\circ}C}$' J. Power Sources, 178, 75 (2008) https://doi.org/10.1016/j.jpowsour.2007.12.002
  19. D. A. Stevens and J. R. Dahn, 'Thermal degradation of the support in carbon-supported platinum electrocatalysts for PEM fuel cells' Carbon, 43, 179 (2005) https://doi.org/10.1016/j.carbon.2004.09.004
  20. H. S. Oh, J. G. Oh, S. J. Haam, K. Arunabha, B. W. Roh, I. C. Hwang, and H. S. Kim, 'On-line mass spectrometry study of carbon corrosion in polymer electrolyte membrane fuel cells' Electrochem. Commun. 10, 1048 (2008) https://doi.org/10.1016/j.elecom.2008.05.006
  21. H. S. Oh, J. G. Oh and H. S. Kim, 'Modification of polyol process for synthesis of highly platinum loaded platinumcarbon catalysts for fuel cells' J. Power Sources 183, 600 (2008) https://doi.org/10.1016/j.jpowsour.2008.05.070
  22. T. H. Hyeon, S. J. Han, Y. E. Sung, K. W. Park and Y. W. Kim, 'High-Performance Direct Methanol Fuel Cell Electrodes using Solid-Phase-Synthesized Carbon Nanocoils' Angew. Chem. Int. Ed. 42, 4352 (2003) https://doi.org/10.1002/anie.200250856
  23. K. Kinoshita, Carbon, Electrochemical and Physicochemical Properities, Wiley, New York, (1998)
  24. L. M. Roen, C. H. Pail, and T. D. Jarvi, 'Electrocatalytic Corrosion of Carbon Support in PEMFC Cathodes' Electrochem. Solit-State Lett. 7, A19 (2004) https://doi.org/10.1149/1.1630412
  25. J. Willsau and J. Heitbaum, 'The influence of Pt-activation on the corrosion of carbon in gas diffusion electrodes-A dems study' J. Electroanal. Chem. 161, 93 (1984) https://doi.org/10.1016/S0022-0728(84)80252-1