DOI QR코드

DOI QR Code

Effect of Acid Treatment of Graphitized Carbon on Carbon Corrosion in Polymer Electrolyte Membrane Fuel Cells

결정성 탄소의 산처리가 고분자연료전지의 성능과 내구성에 미치는 영향 평가

  • Oh, Hyung-Suk (Dept. of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Han, Hak-Soo (Dept. of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Kim, Han-Sung (Dept. of Chemical and Biomolecular Engineering, Yonsei University)
  • 오형석 (연세대학교 화공생명공학과) ;
  • 한학수 (연세대학교 화공생명공학과) ;
  • 김한성 (연세대학교 화공생명공학과)
  • Published : 2009.05.30

Abstract

Pt catalyst was adsorbed on Carbon nanofiber (CNF) by modified polyol method after acid treatment of the carbon support with $HNO_3$ and $H_{2}SO_{4}$. As the time for acid treatment increases, more oxygen functional groups on carbon surface were produced which improve the loading amount and dispersion of Pt catalyst on carbon supports. In order to inspect the effect of CNF acid treatment time on electrochemical corrosion, constant potential of 1.4 V was applied to a single cell for 30 min and the amount of $CO_2$ emitted was monitored with on-line mass spectrometry. According to the results of our experiment, more $CO_2$ was produced with Pt/ oxidized-CNF catalyst in compared to that with unoxidized-CNF. Increasing acid treatment time also induces the more $CO_2$ emission. Besides, performance degradation after corrosion test expanded with severer carbon corrosion. From the observed results, it can be concluded that the acid treatment of CNF is beneficial to catalyst loading, but it also is a significant factor declining the fuel cell durability by accelerating electrochemical oxidation of carbon support.

carbon nanofiber (CNF)의 표면을 질산과 황산을 사용하여 산화시킨 후 백금 촉매를 modified polyol method로 담지시켰다. 산처리 시간이 길어질수록 탄소 표면에 산소 작용기의 양이 증가 했으며 그 결과 백금 담지량이 증가하고 분산도가 향상되었다. CNF의 산처리 시간이 전기화학적 부식특성에 미치는 영향을 평가하기 위해서 단위전지형태에서1.4 V의 정전압 조건을 30분간 인가하였으며 이 때 발생한 $CO_2$ 의 양을 on-line mass spectrometry로 측정하였다. 실험 결과 산처리한 CNF를 사용한 Pt/CNF 촉매가 산처리 하지 않은 CNF를 담체로 사용한 경우보다 $CO_2$ 발생량이 많았으며 산처리 시간이 증가할수록 $CO_2$ 발생량이 증가하였다. 부식실험 이후 성능감소의 폭은 카본부식이 증가할수록 증가하였다. 이는 CNF에 대한 산처리가 촉매 담지에는 유리할 수 있으나 전기화학적 카본 부식을 가속화 시키는 결과를 초래하여 결과적으로 연료전지 내구성을 저하시키는 요인이 될 수 있는 것으로 사료된다.

Keywords

References

  1. T. W. Odom, J. L. Clary, P. Kim, and C. M. LiLieber, 'Atomic structure and electronic properties of singlewalled carbon nanotubes' Nature, 391, 62 (1998) https://doi.org/10.1038/34145
  2. M. R. Falvo, G. J. Clary, R. M. Taylor, V. Chi, J. F. P. Brooks, S. Washburn, and R. Superfine, 'Bending and buckling of carbon nanotubes under large strain' Nature, 389, 582 (1997) https://doi.org/10.1038/39282
  3. T. Gennett, B. J. Landi, J. M. Elich, K. M. Jones, J. L. Alleman, P. Lamarre, R. S. Morris, R. P. Raffaelle, and M. J. Heben, 'Fuel Cell application of nanotube-metal supported catalysts' J. Mater. Res. Soc. Symp. Proc., 756, 379 (2003)
  4. P. Serp, M. Corrias, and P. Kalck, 'Carbon nanotubes and nanofibers in catalysis' Appl. Catal. A, 253, 337 (2003) https://doi.org/10.1016/S0926-860X(03)00549-0
  5. E. Antolini, 'Carbon supports for low-temperature fuel cell catalysts' Appl. Catal. B, 88, 1 (2009) https://doi.org/10.1016/j.apcatb.2008.09.030
  6. M. Carmo, V. A. Paganin, J. M. Rosolen, and E. R. Gonzalez, 'Alternative supports for the preparation of catalysts for low-temperature fuel cells : the use of carbon nanotubes' J. Power Sources, 142, 169 (2005) https://doi.org/10.1016/j.jpowsour.2004.10.023
  7. X. Wang, M. Waje, and Y. Yan, 'CNT-Based Electrodes with High Efficiency for PEMFCs' Electrochem. Solid-State Lett., 8, A42 (2005) https://doi.org/10.1149/1.1830397
  8. N. Rajalakshmi, H. Ryu, M. M. Shaijumon, and S. Ramaprabhu, 'Performance of polymer electrolyte membrane fuel cells with crbon nanotubes as oxygen reduction catalyst support material' J. Power Sources, 140, 250 (2005) https://doi.org/10.1016/j.jpowsour.2004.08.042
  9. D. Villers, S. H. Sun, and A. M. Serventi, J. P. Dodelet, S. Dsilets, 'Characterization of Pt Nanoparticles Deposited onto Carbon Nanotubes Grown on Carbon Paper and Evaluation of This Electrode for the Reduction of Oxygen' J. Phys. Chem. B, 110, 25916 (2006) https://doi.org/10.1021/jp065923g
  10. Y. Shao, G. Yin, and Y Gao, 'Understanding and approaches for the durability issues of Pt-based catalysts for PEM fuel cell' J. Power Sources, 171, 558 (2007) https://doi.org/10.1016/j.jpowsour.2007.07.004
  11. Y. Siyu, H. Miho, and H. Ping, 'PEM Fuel Cell Catalysts: The Improtance of Catalyst Support' ECS Transactions, 16, 2101 (2008) https://doi.org/10.1149/1.2982050
  12. L. Li and Y. Xing, 'Electrochemical Durability of Carbon Nanotubes in Noncatalyzed and Catalyzed Oxidations' J. Electrochem. Soc., 153, A1823 (2006) https://doi.org/10.1149/1.2234659
  13. K. I. Han, J. S. Lee, S. O. Park, S. W. Lee, Y. W. Park, and H. S. Kim, 'Studies on the anode catalysts of carbon nanotube for DMFC' Electrochim. Acta, 50, 791 (2004) https://doi.org/10.1016/j.electacta.2004.01.115
  14. T. W. Ebbesen, H. Hiura, H. Fujita, and K. Tanigaki, 'Purification of nanotubes' Nature, 367, 519 (1994) https://doi.org/10.1038/367519a0
  15. H. Hiura, T. W. Ebbesen, and K. Tanigaki, 'Opening and purification of carbon nanotubes in high yields' Adv. Mater., 7, 275 (1995) https://doi.org/10.1002/adma.19950070304
  16. T. G. Ros, A. J. Dillen, J. W. Geus, and D. C. Koningsberger, 'Surface Oxidation of Carbon Nanofibres' Chem. Eur. J., 8, No. 5, 1151 (2002) https://doi.org/10.1002/1521-3765(20020301)8:5<1151::AID-CHEM1151>3.0.CO;2-#
  17. J. Chen, M. A. Hamon, H. Hu, Y. Chen, A. M. Roa, P. C. Eklund, 'Solution properties of single-walled carbon nanotubes' Science, 282, 95 (1998) https://doi.org/10.1126/science.282.5386.95
  18. J. Liu, A. G. Rinzler, H. Dai, J. H. Hafner, R. K. Bradly, and P. J. Boul, 'Fullerene pipes' Science, 280, 1253 (1998) https://doi.org/10.1126/science.280.5367.1253
  19. B. C. Satishkumar, E. M. Vogl, A. Govindaraj, and C. N. R. Rao, 'The decoration of carbon nanotubes by metal nanoparticles' J. Phys. D, 29, 3173 (1996) https://doi.org/10.1088/0022-3727/29/12/037
  20. B. C. Satishkumar, A. Govindaraj, J. Mofokeng, G. N. Shbbanna, and C. N. R. Rao, 'Novel experiments with carbon nanotubes : Opening, filling, closing and functionalizing nanotubes' J. Phys. B: At. Mol. Opt. Phys., 29, 4925 (1996) https://doi.org/10.1088/0953-4075/29/21/006
  21. K. H. Lim, H. S. Oh, S. E. Jang, Y. J. Ko, H. J. Kim, H. S. Kim, 'Effect of operating conditions on carbon corrosion in polymer electrolyte membrane fuel cells' J. Power Sources, In Press (2009) https://doi.org/10.1016/j.jpowsour.2009.04.006
  22. H. S. Oh, J. G. Oh, S. J. Haam, K. Arunabha, B. W. Roh, I. C. Hwang, H. S. Kim, 'On-line mass spectrometry study of carbon corrosion in polymer electrolyte membrane fuel cells' Electrochem. Commun., 10, 1048 (2008) https://doi.org/10.1016/j.elecom.2008.05.006
  23. H. S. Oh, J. G. Oh, and H. S. Kim, 'Modification of polyol process for synthesis of highly platinum loaded platinumcarbon catalysts for fuel cells' J. Power Sources, 142, 169 (2008) https://doi.org/10.1016/j.jpowsour.2004.10.023
  24. K. H. Kangasniermi, D. A. Condit, and T. D. Jarvi, 'Characterization of Vulcan Electrochemically Oxidized under Simulated PEM Fuel Cell Conditions' J. Electrochem. Soc., 151, E125 (2004) https://doi.org/10.1149/1.1649756
  25. J. S. Ye, X. Liu, H. F. Cui, W. D. Zhang, F. S. Sheu, and T. M. Lim, 'Electrochemical oxidation of multi-walled carbon nanotubes and its application to electrochemical double layer capacitors' Electrochem. Commun., 7, 249 (2005) https://doi.org/10.1016/j.elecom.2005.01.008
  26. Y. Shao, G. Yin, J. Zhang, and Y. Gao, 'Comparative investigation of the resistance to electrochemical oxidation of carbon black and carbon nanotubes in aqueous sulfuric acid solution' ' Electrochim. Acta, 51, 5853 (2006) https://doi.org/10.1016/j.electacta.2006.03.021
  27. Y. Xing, L. Li, C. C. Chusuei, and R. V. Hull, 'Sonochemical Oxidation of Multiwalled Carbon Nanotubes' Langmuir, 21, 4185 (2005) https://doi.org/10.1021/la047268e
  28. J. L. Figueiredo, M. F. R. Pereira, M. M. A. Freitas, and J. J. M. Orfao, 'Modification of the surface chemistry of activated carbons' Carbon, 37, 1379 (1999) https://doi.org/10.1016/S0008-6223(98)00333-9
  29. H. S. Oh, J. G. Oh, Y. G. Hong, and H. S. Kim, 'Investigation of carbon-supported Pt nanocatalyst preparation by the polyol process for fuel cell applications' Electrochim Acta, 52, 7278 (2007) https://doi.org/10.1016/j.electacta.2007.05.080
  30. K. Kinoshita, Carbon, Electrochemical and Physicochemical Properities, Wiley, New York, 1998
  31. O. A. Baturina, S. R. Aubuchon, and K. J. Wynne, 'Thermal Stability in Air of Pt/C Catalysts and PEM Fuel Cell Catalyst Layers' Chem. Mater., 18, 1498 (2006) https://doi.org/10.1021/cm052660e
  32. D. A. Stevens, M. T. Hicks, G. M. Haugen, and J. R. Dahn, 'Ex Situ and In Situ Stability Studies of PEMFC Catalysts Effect of Carbon Type and Humidification on Degradation of the Carbon' J. Electrochem. Soc., 152, A2309 (2005) https://doi.org/10.1149/1.2097361
  33. D. A. Stevens and J. R. Dahn, 'Thermal degradation of the support in carbon-supported platinum electrocatalysts for PEM fuel cells' Carbon, 43, 179 (2005) https://doi.org/10.1016/j.carbon.2004.09.004