DOI QR코드

DOI QR Code

Inhibitory Effects of Eel (Anguilla japonica) Extracted Carnosine on Protein Glycation

뱀장어(Anguilla japonica)로부터 추출된 Carnosine의 단백질당화 억제효과

  • Song, Ho-Su (Department of Food Science and Biotechnology, Pukyong National University) ;
  • Lee, Keun-Tai (Department of Food Science and Biotechnology, Pukyong National University) ;
  • Park, Seong-Min (Department of Food Science and Biotechnology, Pukyong National University) ;
  • Kang, Ok-Ju (Department of Food and Nutritional Sciences Kyungnam University)
  • 송호수 (부경대학교 식품생명공학부) ;
  • 이근태 (부경대학교 식품생명공학부) ;
  • 박성민 (부경대학교 식품생명공학부) ;
  • 강옥주 (경남대학교 생명과학부)
  • Received : 2008.09.22
  • Accepted : 2009.04.02
  • Published : 2009.04.30

Abstract

Glycation and oxidation induce formation of carbonyl (CO) groups in proteins, which can be used to develop an index of cellular aging. Methyl glyoxal (MG) and hypochlorite anions are deleterious products of oxygen free-radical reaction. The effects of eel carnosine on protein modification mediated by MG and hypochlorite were studied. MG and hypochlorite induced formation of carbonyl groups with high molecular weight and cross-linked forms of ovalbumin. The presence of eel carnosine effectively inhibited these modifications in a concentration-dependent manner. Imidazole ring in eel carnosine might have a primary role in inhibition of protein glycation. Our data suggests that the eel carnosine may be useful as a "natural" anti-glycating agents.

Keywords

References

  1. Boldyrev, A., H. Abe, S. Stvolinsky and O. Tyulina. 1995. Effects of carnosine and related compounds on generation of free oxygen species: a comparative study. Biochem. Physiol., 112, 481-485 https://doi.org/10.1016/0305-0491(95)00084-4
  2. Bucala, R., A. Cerami and H. Vlassara. 1995. Advanced glycosylation end products in diabetic complications. Diabetes Rev., 3, 258-268
  3. Bussayarat, M. and K.O. Intarapichet. 2005. Heat and ultrafiltration extraction of broiler meat carnosine and its antioxidant activity. Meat Sci., 71, 364-374 https://doi.org/10.1016/j.meatsci.2005.04.017
  4. Frye, E.B., T.P. Degenhardt, S.R. Thorpe and J.W. Baynes. 1998. Role of the Maillard reaction in aging of tissue proteins-advanced glycation end product-dependent increase in imidazolium crosslinks in human lens proteins. J. Biol. Chem., 273, 18714-18719 https://doi.org/10.1074/jbc.273.30.18714
  5. Hamada, Y., N. Araki, N. Koh, J. Nakamura, S. Homuchi and N. Hotta. 1996. Rapid formation of advanced glycation end products by intermediate metabolites of the glycolytic pathway and polyol pathway. Biochem. Biophys. Res. Commun., 228, 539-543 https://doi.org/10.1006/bbrc.1996.1695
  6. Harris, R.C., D.J. Marlin, D.H. Snow and E. Hultman. 1990. Muscle buffering capacity and dipeptide content in the throughbred horse, greyhound dog and man. Biochem. Physiol., 97, 249-251 https://doi.org/10.1016/0300-9629(90)90180-Z
  7. Hipkiss, A.R., C. Brownson and M.J. Carrier. 2001. Carnosine, the anti-ageing, anti-oxidant dipeptide, may react with protein carbonyl groups. Mech. Aging Devel., 122, 1431-1445 https://doi.org/10.1016/S0047-6374(01)00272-X
  8. Hipkiss, A.R., V.C. Worthington, D.T.J. Himsworth and W. Herwig. 1998. Protective effects of carnosine against protein modification mediated by malondialdehyde and hypochlorite. Bioch. Biophy. Acta, 1380, 46-54 https://doi.org/10.1016/S0304-4165(97)00123-2
  9. Hipkiss, A.R. 1998. Carnosine, a protective, anti-aging peptide? Bioche. Cell Biol., 30, 863-868 https://doi.org/10.1016/S1357-2725(98)00060-0
  10. Hobart, L.J., I. Seibel, G.S. Yeargans and N.W. Seidler. 2004. Anti-crosslinking properties of carnosine: Significance of histidine. Life Sci., 75, 1379-1389 https://doi.org/10.1016/j.lfs.2004.05.002
  11. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head bacteriophage T3. Nature, 227, 680-685 https://doi.org/10.1038/227680a0
  12. Lee, B.J., J.H. Park, Y.S. Lee, M.H. Cho, Y.C. Kim and D.G. Hendricks. 1999. Effect of carnosine and related compounds on glucose oxidation and protein glycation in vitro. J. Biochem. Mol. Biol., 32, 370-378
  13. McManus, I.R. 1957, Some metabolic precursors of the N-1-methyl group of anserine in the rat. J. Bio. Chem., 225, 325-334
  14. Miyata, T., S. Sugiyama, D. Suziki, R. Inagi and K. Kurokawa. 1999. Increased carbonyl modification by lipids and carbohydrates in diabetic nephropathy. Kidney Int., 56, 54-56 https://doi.org/10.1046/j.1523-1755.1999.07114.x
  15. Nagasawa, T., T. Yokozawa and K. Terassawa. 2001. A study of kampo medicines in a diabetic nephrophathy model. J. Trad. Med., 19, 161-168
  16. Quinn, P.R., A.A. Boldrev and V.E. Formazuyk. 1992. Carnosine : its properties, functions and potential therapeutic applications. Mol. Aspects Med., 13, 379-444 https://doi.org/10.1016/0098-2997(92)90006-L
  17. Smith, E. and C. Bate. 1983. The buffering of muscle in rigor, protein, phosphate and carnosine. J. Physiol., 92, 336-343
  18. Song, H.S., K.T. Lee and O.K. Kang. 2006. Effect of extraction method on the carnosine, protein, and iron contents of eel (Anguilla japonica) extracts. J. Kor. Fish. Soc., 39, 384-390
  19. Stadtman, E.R. 1992. Protein oxidation and aging. Science, 257, 1220-1224 https://doi.org/10.1126/science.1355616
  20. Thornalley, P.J. 1996. Advanced glycation and the development of diabetic complications. Unifying the involvement of glucose, methylglyoxal and oxidative stress. Endocrinol. Metab., 3, 149-166
  21. Torreggiani, A., G. Fini and G. Bottura. 2001. Effect of transition metal binding on the tautomeric equilibrium of the carnosine imidazolic ring. J. Mol. Structu., 565, 341-346 https://doi.org/10.1016/S0022-2860(01)00461-6
  22. Yokozawa, T., T. Nakagawa and K. Terasawa. 2001. Effects of oritental medicines on the production of advanced glycation products. J. Trad. Med., 18, 107-112

Cited by

  1. 뱀장어(Anguilla japonica) 추출 Carnosine이 과산화수소로 유도된 인체 백혈구의 DNA 손상과 Repair에 미치는 효과 vol.50, pp.5, 2009, https://doi.org/10.5657/kfas.2017.0520