Preparation of Water-Resistant Humidity Sensor Using Photocurable Reactive Oligomers Containing Ionene Unit and Their Properties

이온넨 단위를 가지는 광경화성 반응성 올리고머를 이용한 내수성 습도센서의 제조 및 감습 특성

  • Jeon, Young-Min (Department of Chemistry and Institute of Basic Science, Dankook University) ;
  • Gong, Myoung-Seon (Department of Chemistry and Institute of Basic Science, Dankook University)
  • Published : 2009.01.25

Abstract

New polyelectrolytes derived from ionene-containing photocurable reactive oligomer (PIDM) were prepared for water-resistant humidity-sensitive membranes. The mixture of PIDM, hexamethylene dimethacrylate (HDM), pentaerythritol triacrylate dimer (SP1013), and photoinitiator was simultaneously coated on the sensor electrode with photoinitiated radical polymerization. The pretreatment of the substrates with vinyl-type silane-coupling reagent was performed for improving the water durability and stability of the sensors at high temperature and humidity. When the resistance dependences on the relative humidity of the crosslinked PIDMs were measured, it was found that the resistance varied three orders of magnitude between 20 and 90%RH, which was required for the humidity sensor operating at ambient humidity. Their hysteresis, temperature dependence, response time, water durability, and high temperature/humidity stabilities were measured and evaluated as a humidity-sensing membrane.

내수성 감습막으로 사용하기 위하여 이온넨을 포함하는 광경화성 반응성 올리고머(PIDM)로부터 새로운 종류의 전해질 고분자를 제조하였다. PIDM, hexamethylene dimethacrylate(HDM), pentaerythritol triacrylate dimer(SP1013) 및 광개시제를 혼합하여 전극에 광개시 라디칼 중합과 동시에 도포하였다. 또한, 센서의 내수성 그리고 고온/고습에서의 안정성을 증진시키기 위하여 전극 기판에 비닐기를 가지는 실란 카플링제를 사용하여 전처리 하였다. 가교화된 이온넨으로 이루어진 습도센서의 상대습도에 대한 저항을 측정하였을 때, 저항은 20%$\sim$90%RH 상대습도 영역에서 $10^3$의 값이 변화하였으며 이것은 대기의 습도를 측정하는데 요구되는 특성을 만족시키고 있다. 그 밖에 온도의존성, 히스테리시스 응답 및 회복속도, 내수성 그리고 고온/고습에서 장기 안정성을 측정하여 습도센서로서 특성을 평가하였다.

Keywords

References

  1. N. Yamazoe and Y. Shimizu, Sens. Actuat., 10, 372 (1986)
  2. Y. Sakai, Y. Sadaoka, and M. Matsuguchi, Sens. Actuat. B, 35, 85 (1996) https://doi.org/10.1016/S0925-4005(96)02019-9
  3. D. G. Lee, Y. M. Jeon, and T. H. Lim, Polymer(Korea), 31, 194 (2007)
  4. D. G. Lee, Y. M. Jeon, and T. H. Lim, Polymer(Korea), 31, 302 (2007)
  5. Y. Sakai, Y. Sadaoka, and K. Ikeuchi, Sens. Actuat., 9, 125 (1986) https://doi.org/10.1016/0250-6874(86)80014-2
  6. Y. Sakai, Y. Sadaoka, M. Matsuguchi, Y. Kanakura, and M. Tamura, J. Electrochem. Soc., 138, 2474 (1991) https://doi.org/10.1149/1.2085997
  7. C. W. Lee, H. W. Rhee, and M. S. Gong, Synth. Met., 106, 177 (1999) https://doi.org/10.1016/S0379-6779(99)00132-0
  8. P. G. Su and C. L. Uen, Sens. Actuat. B, 107, 317 (2005) https://doi.org/10.1016/j.snb.2004.10.018
  9. Y. Sakai, Y. Sadaoka, and H. Hukumoto, Sens. Actuat., 13, 243 (1988) https://doi.org/10.1016/0250-6874(88)85004-2
  10. Y. Sakai, M. Matsuguchi, and T. Hurukawa, Sens. Actuat. B, 66, 135 (2000) https://doi.org/10.1016/S0925-4005(00)00313-0
  11. C. W. Lee, H. W. Rhee, and M. S. Gong, Sens. Actuat. B, 73, 124 (2001) https://doi.org/10.1016/S0925-4005(00)00668-7
  12. H. W. Rhee, M. H. Lee, and M. S. Gong, Sens. Actuat. B, 73, 185 (2001) https://doi.org/10.1016/S0925-4005(00)00703-6
  13. M. S. Gong, S. W. Joo, and B. K. Choi, J. Mater. Chem., 12, 902 (2002) https://doi.org/10.1039/b108647m
  14. C. W. Lee and M. S. Gong, Macromol. Res., 11, 322 (2003) https://doi.org/10.1007/BF03218371
  15. C. W. Lee, O. Kim, and M. S. Gong, J. Appl. Polym. Sci., 89, 1062 (2003) https://doi.org/10.1002/app.12253
  16. Y. Sakai, M. Matsuguchi, Y. Sadaoka, and K. Hirayama, J. Electrochem. Soc., 140, 432 (1993) https://doi.org/10.1149/1.2221063
  17. G. Casalbore-Miceli, M. J. Yang, Y. Lib, A. Zanelli, A. Martelli, S. Chenb, Y. Sheb, and N. Camaioni, Sens. Actuat. B, 114, 584 (2006) https://doi.org/10.1016/j.snb.2005.05.023
  18. Y. Li, Y. Chen, C. Zhang, T. Xue, and M. Yang, Sens. Actuat. B, 125, 131 (2007) https://doi.org/10.1016/j.snb.2007.01.048
  19. Y. Sakai, Y. Sadaoka, and M. Shimada, Sens. Actuat. B, 16, 359 (1989) https://doi.org/10.1016/0250-6874(89)85006-1
  20. C. W. Lee, B. K. Choi, and M. S. Gong, Analyst, 129, 651 (2004) https://doi.org/10.1039/b404334k
  21. H. S. Park, C. W. Lee, and M. S. Gong, Macromol. Res., 12, 311 (2004) https://doi.org/10.1007/BF03218405
  22. H. S. Park, C. W. Lee, J. K. Kim, S. W. Joo, B. K. Coi, and M. S. Gong, Sens. Actuat. B, 109, 315 (2005) https://doi.org/10.1016/j.snb.2004.12.063
  23. H. S. Park, C. W. Lee, J. G. Kim, and M. S. Gong, Macromol. Res., 13, 96 (2005). https://doi.org/10.1007/BF03219021
  24. P. G. Su, I. C. Chen, and R. J. Wu, Anal. Chim. Acta, 449, 103 (2001) https://doi.org/10.1016/S0003-2670(01)01345-9
  25. C. D. Feng, S. L. Sun, H. Wang, C. U. Segre, and J. R. Stetter, Sens. Actuat. B, 40, 217 (1997) https://doi.org/10.1016/S0925-4005(97)80265-1
  26. J. Wang, B. Xu, J. Zhang, G. Liu, T. Zhang, F. Qiu, and M. Zhao, J. Mater. Sci. Lett., 18, 1603 (1999) https://doi.org/10.1023/A:1006676703641
  27. J. Wang, Q. Lin, T. Zhang, R. Zhou, and B. Xu, Sens. Actuat. B, 81, 248 (2002) https://doi.org/10.1016/S0925-4005(01)00959-5
  28. J. Wang, B. K. Xu, S. P. Ruan, and S. P. Wang, Mater. Chem. Phys., 78, 748 (2003)
  29. M. S. Park, T. H. Lim, Y. M. Jeon, J. G. Kim, S. W. Joo, and M. S. Gong, J. Colloid Interf. Sci., 321, 60 (2008) https://doi.org/10.1016/j.jcis.2008.01.053
  30. M. Uedaa, K. Nakamura, K. Tanaka, H. Kita, and K. Okamoto, Sens. Actuat. B, 127, 463 (2007) https://doi.org/10.1016/j.snb.2007.04.042
  31. M. S. Gong. S. W. Joo, and B. K. Choi, Sens. Actuat. B, 86, 81 (2002) https://doi.org/10.1016/S0925-4005(02)00151-X
  32. Y. Wei, W. Wang, J.-M. Yeh, B. Wang, D. Yang, J. K. Murray, Jr., D. Jin, and G. Wei, Hybrid organic-inorganic composite, J. E. Mark, C. Y. C. Lee, and V. A. Bianconi, Editors, ACS Symp. Ser. 585, American Chemical Society, Washington DC, p 125 (1995)