Preparation of Silver/Polystyrene Beads via in Sito Reduction of Silver Alkylcarbamate Complex

은 알킬카바메이트 복합체의 환원에 의한 은/폴리스티렌 비드의 제조

  • Lim, Tae-Ho (Department of Chemistry and Institute of Basic Science, Dankook University) ;
  • Jeon, Young-Min (Department of Chemistry and Institute of Basic Science, Dankook University) ;
  • Gong, Myoung-Seon (Department of Chemistry and Institute of Basic Science, Dankook University)
  • Published : 2009.01.25

Abstract

Monodisperse polystyrene and its copolymer beads containing amine function were prepared for the electroless silver plating using reduction of silver alkylcarbamate complex in organic solvent. Soap-free emulsion polymerization was adopted for the polymerization of styrene, divinylbenzene (DVB), and 2-(N,N-dimethylamino) ethyl methacrylate (DAEMA) in the presence of poly (vinyl alcohol) in a water/methanol solvent. The resulting poly (styrene/DVB/DAEMA), containing 30/0$\sim$1.5/0$\sim$3 wt% in monomer composition, were found to be a sphere-type particle with diameter of 1 ${\mu}m$. Silver Ag-coated polystyrene beads were prepared by in sito reduction of a silver 2-ethylhexylcarbamate (Ag-EHCB) complex solution with hydrazine without pretreatment of polystyrene beads. Robust Ag/polystyrene beads were analyzed by SEM, UV -visible spectrometer and XRD.

은 카바메이트 착체 화합물의 환원에 의한 무전해 도금법으로 은/폴리스티렌 비드를 제조하기 위하여 폴리스티렌 및 아민 관능기를 가지는 공중합체 비드를 제조하였다. 스티렌, divinylbenzene(DVB) 그리고 2-(N,N-dimethylamino)ethyl methacrylate (DAEMA) 단량체들을 poly(vinyl alcohol) 존재 하에서 물/메탄올을 용매로 사용하여 무유화중합을 진행하였다. 30/0$\sim$1.5/0$\sim$3 wt%의 단량체 조성을 가지는 poly(styrene/DVB/DAEMA) 비드는 구형으로 1 ${\mu}m$의 일정한 크기를 가지고 있었다. 아민 기능기를 가지는 폴리스티렌 비드의 무전해 도금은 비드의 전처리 없이 silver 2-ethylhexylcarbamate (Ag-EHCB) 복합체와 히드라진 환원제를 사용하여 메탄올 용액에서 진행하였다. 제조된 비드와 도금된 비드 표면의 형태를 SEM으로 관찰하였으며 은 도금된 비드를 분산시켜 자외선 흡수 변화 그리고 도금된 은의 성분을 XRD로 분석하였다.

Keywords

References

  1. J. B. Hajdu, Plat. Surf. Finish., 83, 29 (1996)
  2. P. C. Hidber, W. Helbig, E. Kim, and G. M. Whitesides, Langmuir, 12, 1375 (1996) https://doi.org/10.1021/la9507500
  3. D. O. Kim, W. I. Shon, J. M. Jin, and S. H. Oh, Polymer (Korea), 31, 410 (2007)
  4. D. O. Kim, W. I. Shon, J. M. Jin, and S. H. Oh, Polymer (Korea), 31, 184 (2007)
  5. H. K. Park, J. K. Yoon, and K. Kim, Langmuir, 22, 1626 (2006) https://doi.org/10.1021/la052559o
  6. K. Kim, H. B. Lee, H. K. Park, and K. S. Shin, J. Colloid Interf. Sci., 318, 195 (2008) https://doi.org/10.1016/j.jcis.2007.09.025
  7. Z. Q. Tian, B. Ren, and D. T. Wu, J. Phys. Chem. B, 106, 9463 (2002) https://doi.org/10.1021/jp0257449
  8. W. E. Doering and S. Nie, J. Phys. Chem. B, 106, 311 (2002) https://doi.org/10.1021/jp011730b
  9. W. Chu, R. J. LeBlanc, C. T. Williams, J. Kubota, and F. Zaera, J. Phys. Chem. B, 107, 14365 (2003) https://doi.org/10.1021/jp0359586
  10. Neeta L. Lala, T. C. Deivaraj, and J. Y. Lee, Colloid Surface A, 269, 119 (2005) https://doi.org/10.1016/j.colsurfa.2005.06.073
  11. Z. Hou, S. Dante, N. L. Abbott, and P. Stroeve, Langmuir, 15, 3011 (1999) https://doi.org/10.1021/la981644b
  12. P. C. Hidber, P. F. Nealey, W. Helbig, and G. M. Whitesides, Langmuir, 12, 5209 (1996) https://doi.org/10.1021/la960238u
  13. K. R. Brown and M. J. Natan, Langmuir, 14, 726 (1998) https://doi.org/10.1021/la970982u
  14. A. M. T. van de Putten, J. W. G. de Bakker, and L. G. J. Fokkink, J. Electrochem. Soc., 139, 3475 (1992) https://doi.org/10.1149/1.2069102
  15. V. P. Menon and C. R. Martin, Anal. Chem., 67, 1920 (1995) https://doi.org/10.1021/ac00109a003
  16. S. Hrapovic, Y. Liu, G. Enright, F. Bensebaa, and J. H. T. Luong, Langmuir, 19, 3958 (2003) https://doi.org/10.1021/la0269199
  17. D. I. Gittins, A. S. Susha, B. Schoeler, and F. Caruso, Adv. Mater., 14, 508 (2002) https://doi.org/10.1002/1521-4095(20020404)14:7<508::AID-ADMA508>3.0.CO;2-T
  18. O. Siiman and A. Burshteyn, J. Phys. Chem. B, 104, 9795 (2000) https://doi.org/10.1021/jp000255z
  19. B. H. Jun, J. H. Kim, H. Park, J. S. Kim, K. N. Yu, S. M. Lee, H. Choi, S. Y. Kwak, Y. K. Kim, D. H. Jeong, M. J. Cho, and Y. S. Lee, J. Comb. Chem., 9, 237 (2007) https://doi.org/10.1021/cc0600831
  20. J. M. Lee, Y. G. Lee, D. W. Kim, C. Oh, S. M. Koo, and S. G. Oh, Colloid Surface A, 301, 48 (2007) https://doi.org/10.1016/j.colsurfa.2006.12.020
  21. X. Xu, X. Luo, H. Zhuang, W. Li, and B. Zhang, Mater. Lett., 57, 3987 (2003) https://doi.org/10.1016/S0167-577X(03)00252-0
  22. A. L. Dearden, P. J. Smith, D. Y. Shin, N. Reis, B. Derby, and P. O'Brien1, Macromol. Rapid Commun., 26, 315 (2005) https://doi.org/10.1002/marc.200400445
  23. M. S. Park, T. H. Lim, Y. M. Jeon, J. G. Kim, S. W. Joo, and M. S. Gong, Macromol. Res., 16, 308 (2008) https://doi.org/10.1007/BF03218522
  24. M. S. Park, T. H. Lim, Y. M. Jeon, J. G. Kim, S. W. Joo, and M. S. Gong, Sens. Actuators B, 133, 166 (2008) https://doi.org/10.1016/j.snb.2008.02.008
  25. M. S. Park, T. H. Lim, Y. M. Jeon, J. G. Kim, S. W. Joo, and M. S. Gong, J. Colloid Interf. Sci., 321, 60 (2008) https://doi.org/10.1016/j.jcis.2008.01.053
  26. R. Alessio, D. B. Dell'Amico, F. Calderazzo, U. Englert, A. Guarini, L. Labella, and P. Strasser, Helv. Chim. Acta, 18, 219 (1998)
  27. D. B. Dell'Amico, F. Calderazzo, L. Labella, F. Marchetti, and G. Pampaloni, Chem. Rev., 103, 3857 (2003) https://doi.org/10.1021/cr940266m