Thermotropic Liquid Crystalline Behavior of [4-{4'-(Nitrophenylazo)phenoxycarbonyl}]alkanoated Celluloses

[4-{4'-(니트로페닐아조)펜옥시카보닐}]알카노화 셀룰로오스들의 열방성 액정 거동

  • Jeong, Seung-Yong (Department of Polymer Science and Engineering, Dankook University) ;
  • Ma, Yung-Dae (Department of Polymer Science and Engineering, Dankook University)
  • 정승용 (단국대학교 고분자공학과) ;
  • 마영대 (단국대학교 고분자공학과)
  • Published : 2009.01.25

Abstract

The thermotropic liquid crystalline behavior of the homologous series of cellulose tri[4-{4'-(nitrophenylazo) phenoxycarbonyl}] alkanoates (NACEn, n=2$\sim$8, 10, the number of methylene units in the spacer) have been investigated. All of the homologoues formed monotropic nematic phases. The isotropic-nematic transition temperature ($T_{iN}$) decreased when n is increased up to 7, but it became almost constant when n is more than 7. The plot of transition entropy at $T_{iN}$ against n had a sharp negative inflection at n=7. The sharp change at n=7 may be attributed to the difference in arrangement of the side groups. The melting temperature ($T_m$) and associated entropy change at $T_m$, in contrast with $T_{iN}$ and associated entropy change at $T_{iN}$, exhibited a distinct odd-even effect, suggesting that the average shape of the side chains in the crystalline phase is different from that in the nematic phase. The thermal stability and degree of order of the nematic phase observed for NACEn were significantly different from those reported for the homologous series of side-chain and combined type liquid crystal polymers bearing azobenzene or biphenyl units in the side chains. The results were discussed in terms of the differences in the chemical structure, the flexibility of the main chain, the mode of chemical linkage of the side group with the main chain, and the number of the mesogenic units per repeating unit.

셀룰로오스 트리[4-{4'-(니트로페닐아조)펜옥시카보닐}]알카노에이트들(NACEn, n=2$\sim$8,10, 유연격자 중의 메틸렌 단위들의 수)의 동족체들의 열방성 액정 특성을 검토하였다. 모든 동족체들은 단방성 네마틱 상들을 형성하였다. 액체 상에서 네마틱 상으로의 전이온도($T_{iN}$)는 n이 증가함에 따라 낮아지나 n이 7이상에서 거의 일정하게 되었다. $T_{iN}$에서의 엔트로피 변화와 n의 관계를 나타낸 그림 상에는 n=7에서 급격한 엔트로피의 감소가 관찰되었다. n=7에서 급격한 변화는 곁사슬 그룹의 배열의 차이에 의해 초래되는 것으로 생각된다. 용융온도($T_m$)와 $T_m$에서의 엔트로피 변화는 $T_{iN}$$T_{iN}$에서의 엔트로피 변화와 판이하게 뚜렷한 홀수-짝수 효과를 나타냈다. 이러한 사실은 네마틱 상과 결정 상에서의 곁사슬 그룹들의 평균적인 형태가 판이함을 시사한다. NACEn에서 관찰되는 네미틱상의 열적 안정성과 질서도는 아조벤젠 혹은 바이페닐 단위들을 곁사슬로 지닌 곁사슬형 그리고 복합형 액정 고분자 동족체들에 대해 보고된 결과들과 현저히 달랐다. 이들의 결과를 주사슬의 화학구조와 유연성, 주사슬과 곁사슬 그룹의 결합양식 그리고 반복단위당의 mesogenic 단위들의 수의 차이들의 견지에서 검토하였다.

Keywords

References

  1. H. Finkelmann, M. Happ, M. Portugall, and H. Ringsdorf, Makromol. Chem., 179, 2541 (1978) https://doi.org/10.1002/macp.1978.021791018
  2. V. Percec and C. Pugh, Side Chain Liquid Crystal Polymers, C. B. McArdle, Editor, Chapmann and Hall, New York, Chap. 3, p 30 (1989)
  3. V. P. Shibaev, Liquid-Crystal Polymers, N. A. Plate, Editor, Plenum Press, New York and London, Chap. 6, p 193 (1993)
  4. C. Pugh and A. L. Kiste, Handbook of Liquid Crystals, D. Demus, J. Goodby, G. W. Gray, H.-W. Spiess, and V. Vill, Editors, Wiley-VCH, Weinheim-New York, Vol 3, Chap. Ⅲ, p 123 (1998)
  5. V. Percec and D. M. Tomazos, Comprehensive Polymer Science, First Supplement, S. L. Aggarwal and S. Russo, Editors, Pergamon Press, Oxford, Chap. 14, p 299 (1992)
  6. V. Shibeav, A. Bobrovsky, and N. Boiko, Prog. Polym. Sci., 28, 729 (2003) https://doi.org/10.1016/S0079-6700(02)00086-2
  7. S.-Y. Jeong and Y.-D. Ma, Polymer(Korea), 30, 35 (2006).
  8. T. Fukuda, Y. Tsujii, and T. Miyamoto, Macromol. Symp., 99, 257 (1995) https://doi.org/10.1002/masy.19950990127
  9. Y.-D. Ma, Polymer Science Technology, 8, 555 (1997)
  10. S.-Y. Jeong, J.- H. Jeong, Y.-D. Ma, and Y. Tsujii, Polyme(Korea), 25, 279 (2001)
  11. Q. Zhoi, L. Zhang, H. Okamura, M. Minoda and T. Miyamoto, J. Polym. Sci. Part A: Polym. Chem., 39, 376 (2001) https://doi.org/10.1002/1099-0518(20010201)39:3<376::AID-POLA1004>3.0.CO;2-Z
  12. Z. Yue and J. M. G. Cowie, Macromolecules, 35, 6572 (2002) https://doi.org/10.1021/ma0202787
  13. P. Zugenmaier, Handbook of Liquid Crystals, D. Demus, J. Goodby, G. W. Gray, H.-W. Spiess, and V. Vill, Editors, Wiley-VCH, Weinheim-New York, Vol 3, Chap. Ⅸ, p 453 (1998).
  14. B. Huang, J. J. Ge, Y. Li, and H. Hou, Polymer, 48, 264 (2007) https://doi.org/10.1016/j.polymer.2006.11.033
  15. H. Hou, A. Reuning, J. H. Wendorff, and A. Greiner, Macromol. Chem. Phys., 201, 2050 (2000) https://doi.org/10.1002/1521-3935(20001001)201:15<2050::AID-MACP2050>3.0.CO;2-I
  16. J.-H. Kim, S.-Y. Jeong, and Y.-D. Ma, Polymer (Korea), 28, 41 (2004)
  17. J. -H. Kim, S.-Y. Jeong, and Y. -D. Ma, Polymer(Korea), 28, 92 (2004)
  18. S.-Y. Jeong and Y.-D. Ma, Polymer(Korea), 30, 338 (2006)
  19. S.-Y. Jeong and Y.-D. Ma, Polymer(Korea), 31, 356 (2007)
  20. S.-Y. Jeong and Y.-D. Ma, Polymer(Korea), 32, 169 (2008)
  21. S.-Y. Jeong and Y.-D. Ma, Polymer(Korea), 31, 37 (2007)
  22. S.-Y. Jeong and Y.-D. Ma, Industrial Technology Research Paper(Dankook University), 8, 69 (2007)
  23. S.-Y. Jeong and Y.-D. Ma, J. Korean Ind. Eng. Chem., 19, 504 (2008)
  24. S.-Y. Jeong and Y.-D. Ma, Polymer(Korea), 32, 489 (2008)
  25. C. Wu, Q. Gu, Y. Huang, and C. Chen, Liq. Cryst., 30, 733 (2003) https://doi.org/10.1080/0267829031000115005
  26. X. Hu, P. J. Zheng, X. Y. Zhao, L. Li, K. C. Tam, and L. H. Gan, Polymer, 45, 6219 (2004) https://doi.org/10.1016/j.polymer.2004.05.072
  27. M. Sato, M. Hayakawa, K. Nakagawa, K.-I. Mukaida, and H. Fujiwara, Macromol. Rapid Commun., 15, 21 (1994) https://doi.org/10.1002/marc.1994.030150105
  28. A. T. M. Macelis, A. Koudijs, and E. J. R. Sudholter, Mol. Cryst. Liq. Cryst., 411, 193 (2004) https://doi.org/10.1080/15421400490435035
  29. C. T. Imrie, P. A. Henderson, and J. M. Seddon, J. Mater. Chem., 14, 2486 (2004) https://doi.org/10.1039/b404319g
  30. P. A. Henderson, R. T. Inkster, J. M. Seddon, and C. T. Imrie, J. Mater. Chem., 11, 2722 (2001) https://doi.org/10.1039/b104490g
  31. A. A. Craig and C. T. Imrie, J. Mater. Chem., 4, 1705 (1994) https://doi.org/10.1039/jm9940401705
  32. C. Noel, Handbook of Liquid Crystals, D. Demus, J. Goodby, G. W. Gray, H. -W. Spiess, and V. Vill, Editors, Wiley-VCH, Weinheim-New York, Vol 3, Chap. Ⅱ, p 93 (1998)
  33. J. W. Y. Lam and B. Z. Tang, J. Polym. Sci. Part A: Polym. Chem., 41, 2607 (2003) https://doi.org/10.1002/pola.10802
  34. P. Maganini, Thermotropic Liquid Crystal Polymer Blends, F. P. La Mania, Editor, Technonic Publishing Company, Inc., Western Hemisphere, Chap. 1, p 7 (1993)
  35. M. Yalpani, Polysaccharides, Elsevier, New York, Chap. 4, p 83 (1998)
  36. A. A. Craig and C. T. Imrie, Macromolecules, 28, 3617 (1995) https://doi.org/10.1021/ma00114a015
  37. V. Percec, A. D. Asandei, D. H. Hill, and D. Crawford, Macromolecules, 32, 2597 (1999) https://doi.org/10.1021/ma9900129
  38. Z. Komiya and R. R. Schrock, Macromolecules, 26, 1393 (1993) https://doi.org/10.1021/ma00058a031
  39. M. Ungerank, B. Winkler, E. Eder, and F. Stelzer, Macromol. Chem. Phys., 196, 3623 (1995). https://doi.org/10.1002/macp.1995.021961116
  40. B. Q. Chen, A. Kameyama, and T. Nishikubo, Macromolecules, 32, 6485 (1999) https://doi.org/10.1021/ma990348i
  41. Z. Komiya, C. Pugh, and R. R. Schrock, Macromolecules, 25, 6586 (1992) https://doi.org/10.1021/ma00050a031
  42. Z. Komiya, C. Pugh, and R. R. Schrock, Macromolecules, 25, 3609 (1992) https://doi.org/10.1021/ma00040a001
  43. B. Winkler, M. Ungerank, and F. Stelzer, Macromol. Chem. Phys., 197, 2343 (1996) https://doi.org/10.1002/macp.1996.021970724
  44. B. R. Maughon, M. Weck, B. Mohr, and R. H. Grubbs,Macromolecules, 30, 257 (1997) https://doi.org/10.1021/ma960658q
  45. C. T. Imrie, F. E. Karasz, and G. S. Attard, Macromolecules, 26, 545 (1993) https://doi.org/10.1021/ma00055a021
  46. S. Freiberg, F. Lagugne- Labarthet, P. Rochon, and A. Natansohn, Macromolecules, 36, 2680 (2003) https://doi.org/10.1021/ma021384b
  47. K. Anderle and J. H. Wendorff, Mol. Cryst. Liq. Cryst., 243, 51 (1994) https://doi.org/10.1080/10587259408037761
  48. M. Han and K. Ichimura, Macromolecules, 34, 90 (2001) https://doi.org/10.1021/ma0009303
  49. J.-W. Lee, J.-I. Jin, B.-W. Jo, J.-S. Kim, W.-C. Zin, and Y.-S. Kang, Acta Polymer, 50, 399 (1999) https://doi.org/10.1002/(SICI)1521-4044(19991201)50:11/12<399::AID-APOL399>3.0.CO;2-7
  50. X. L. Piao, J.-S. Kim, Y.-K. Yun, J.-I. Jin, and S.-K. Hong, Macromolecules, 30, 2294 (1997) https://doi.org/10.1021/ma961649k
  51. J.-W. Lee and J.-I. Jin, Bull. Korean Chem. Sci., 21, 957 (2000)
  52. J.-H. Liu and P.-C. Yang, J. Appl. Polym. Sci., 91, 3693 (2004) https://doi.org/10.1002/app.13614
  53. Y. Sui, Y.-G. Liu, J. Gao, Z.-K. Zhu, D. Y. Huang, and Z.-G. Wang, J. Polym. Sci. Part A: Polym. Chem., 37, 4330 (1999) https://doi.org/10.1002/(SICI)1099-0518(19991201)37:23<4330::AID-POLA9>3.0.CO;2-6
  54. T. Yamaguchi, T. Asada, H. Hayashi, and N. Nakamura, Macromolecules, 22, 1141 (1989) https://doi.org/10.1021/ma00193a024
  55. J. W. Y. Lam, X. Kong, Y. Dong, K. K. L. Cheuk, K. Xu, and B. Z. Tang, Macromolecules, 33, 5027 (2000) https://doi.org/10.1021/ma992097j
  56. A. Ciferri, Liquid Crystallinity in Polymers, A. Ciferri, Editor, VCH Publisher, New York, Chap. 6, p 209 (1991)
  57. A. Takada, T. Fukuda, J. Watanabe, and T. Miyamoto, Macromolecules, 28, 3394 (1995) https://doi.org/10.1021/ma00113a045
  58. S.-Y. Jeong and Y.-D. Ma, J. Korean Ind. Eng. Chem., 18, 475 (2007)
  59. S.-Y. Jeong and Y.-D. Ma, Polymer(Korea), 32, 230 (2008)
  60. B. Reck and H. Ringsdorf, Makromol. Chem. Rapid Commun., 7, 389 (1986) https://doi.org/10.1002/marc.1986.030070612
  61. E. Chiellini and M. Laus, Handbook of Liquid Crystals, D. Demus, J. Goodby, G. W. Gray, H.-W. Spiess, and V. Vill, Editors, Wiley-VCH, Weinheim-New York, Vol 3, Chap. 2, p 26 (1998)
  62. A. M. Donald and A. H. Windle, Liquid Crystal Polymers, Cambridge University Press, Cambridge, Chap. 3, p 50 (1992)
  63. M. Tokita and J. Watanabe, Polym. J., 38, 611 (2006) https://doi.org/10.1295/polymj.PJ2006008
  64. A. A. Craig and C. T. Imrie, Macromolecules, 32, 6215 (1999) https://doi.org/10.1021/ma990525f
  65. P. A. Gemmell, G. W. Gray, and D. Lacey, Mol. Cryst. Liq. Cryst., 122, 205 (1985)
  66. M. Mauzac, F. Hardouim, H. Richard, M. F. Achard, G. Sigaud, and H. Gasparoux, Eur. Polym. J., 22, 137 (1986) https://doi.org/10.1016/0014-3057(86)90108-4