Grafting and Characterization of Zwitter Ionic Poly(ethylene glycol) on Gold-Coated Nitinol Surface Chemisorbed with L-Cysteine

시스틴으로 화학흡착된 금 코팅 니티놀 표면에 앙쪽성 이온 폴리에틸렌글리콜의 그래프트 및 특성 평가

  • Shin, Hong-Sub (Biomaterials Research Center, Korea Institute of Science and Technology) ;
  • Park, Kwi-Deok (Biomaterials Research Center, Korea Institute of Science and Technology) ;
  • Kim, Jae-Jin (Biomaterials Research Center, Korea Institute of Science and Technology) ;
  • Kim, Ji-Heung (Department of Chemical Engineering, Sungkyunkwan University) ;
  • Han, Dong-Keun (Biomaterials Research Center, Korea Institute of Science and Technology)
  • 신홍섭 (한국과학기술연구원 바이오소재연구센터) ;
  • 박귀덕 (한국과학기술연구원 바이오소재연구센터) ;
  • 김재진 (한국과학기술연구원 바이오소재연구센터) ;
  • 김지흥 (성균관대학교 화공과) ;
  • 한동근 (한국과학기술연구원 바이오소재연구센터)
  • Published : 2009.01.25

Abstract

Nitinol alloy (TiNi) has been widely used in vascular stents. To improve the blood compatibility of Nitinol alloy, its surface was chemically modified in this study. Nitinol was first coated with gold, then chemisorbed with L-cysteine (C/N), and followed by grafting of zwitter ionic poly(ethylene glycol) (PEG) (PEG-$N^+-SO_3{^-}$) to produce TiNi-C/N-PEG-N-S. The zwitter ionic PEG grafted on the Nitinol surface was identified by ATR-FTIR, ESCA and SEM. The hydrophilized surface was proven by the decrease of water contact angle. In addition, from the blood compatibility tests such as protein adsorption, platelet adhesion, and blood coagulation time, the surface-modified TiNi alloy exhibited a better blood compatibility as compared to the untreated Nitinol control. These results indicated a feasibility of synergistic effect of hydrophilic PEG and antithrombotic zwitter ion.

니티놀(Nitinol) 합금(TiNi)은 혈관 스텐트로서 널리 사용되고 있다. 본 연구에서는 니티놀 합금의 혈액적 합성을 개선시키기 위해서 화학적인 표면개질을 행하였다. 먼저 니티놀의 표면을 금으로 코팅한 다음 시스턴(L-cysteine, C/N)을 화학흡착한 후 신규 합성한 양쪽성 이온 폴리에틸렌글리콜(PEG) (PEG-$N^+-SO_3{^-}$)을 그래프트 시켜서 TiNi-C/N-PEG-N-S를 제조하였다. 양쪽성 이온 PEG가 그래프트된 니티놀의 표면은 ATR-FTIR, ESCA 및 SEM을 통해서 확인하였고 친수성 표면은 물 접촉각의 감소를 통해서 입증하였다. 또한, 단백질 흡착 및 혈소판 점착과 혈액응고시간 측정과 같은 혈액적합성 평가 결과로부터 미처리 니티놀 합금에 비해서 표면개질된 니티놀 합금이 상대적으로 훨씬 우수한 혈액적합성을 나타내었다. 이는 그래프트된 친수성 PEG와 항응혈성 양쪽성 이온의 상승효과에 의해서 혈액적합성을 대폭 개선시킨 것으로 사료된다.

Keywords

References

  1. S. Windecker, I. Mayer, G. D. Pasquale, W. Maier, O. Dirsch, P. D Groot, Y. P. Wu, G. Noll, B. Leskosek, B. Meier, and O. M. Hess, Circulation, 104, 928 (2001) https://doi.org/10.1161/hc3401.093146
  2. A. L. Lewis, L. A. Tolhurst, and P. W. Stratford, Biomaterials, 23, 1967 (2002) https://doi.org/10.1016/S0142-9612(01)00323-4
  3. I. K. Jung, H. K. Park, C. S. Lim, K. S. Lee, and K. D. Park, Biomater. Res., 7, 59 (2003)
  4. T. Duerig, A. Pelton, and D. Stockel, Mater. Sci. Eng. A, 149, 273 (1999)
  5. L. E. Medawar, P. Rocher, J. C. Hornez, M. Traisnel, J. Breme, and H. F. Hildebrand, Biomol. Eng., 153, 19 (2002)
  6. J. C. Wataha, N. L. O'Dell, B. B. Singh, M. Ghazi, G. M. Whitford, and P. E. Lockwood, J. Biomed. Mater. Res., 537, 58 (2001)
  7. C. C. Shin and C. M. Shin, Appl. Surf. Sci., 219, 347 (2003) https://doi.org/10.1016/S0169-4332(03)00706-2
  8. J. H. Lee, H. B. Lee, and J. D. Andrade, Prog. Polym. Sci., 20, 1043 (1995) https://doi.org/10.1016/0079-6700(95)00011-4
  9. D. K. Han, K. D. Park, K.-D. Ahn, S. Y. Jeong, and Y. H. Kim, J. Biomed. Mater. Res.: Appl. Biomater., 23(A1), 87 (1989)
  10. F. Zhang, E. T. Kang, K. G. Neoh, P. Wang, and K. L. Tan, Biomaterials, 22, 1541 (2001) https://doi.org/10.1016/S0142-9612(00)00310-0
  11. Y. Mori, S. Nagaoka, H. Takiuchi, T. Kikuchi, N. Noguchi, H. Tanzawa, and Y. Noshiki, Trans. Am. Soc. Artif. Intern. Org., 28, 459 (1982)
  12. W. R. Gombotz, W. Guanghui, T. A. Horbett, and A. S. Hoffman, J. Biomed. Mater. Res., 25, 1547 (1991) https://doi.org/10.1002/jbm.820251211
  13. A. Ihs and B. Liedberg, J. Colloid Interf. Sci., 144, 1 (1991) https://doi.org/10.1016/0021-9797(91)90259-B
  14. M. Wirde and U. Gelius, Langmuir, 15, 6370 (1999) https://doi.org/10.1021/la9903245
  15. T. B. McPherson, H. S. Shim, and K. Park, J. Biomed. Mater. Res. Appl. Biomater., 38, 553 (1997)
  16. K. Holmberg, K. Bergstrom, C. Brink, E. Osterberg, F. Tiberg, and J. M. Harris, J. Adhes. Sci. Tech., 7, 503 (1993) https://doi.org/10.1163/156856193X00826
  17. Y. X. Qui, D. Klee, W. Pluster, B. Severich, and H. Hocker, J. Appl. Polym. Sci., 61, 2373 (1996) https://doi.org/10.1002/(SICI)1097-4628(19960926)61:13<2373::AID-APP17>3.0.CO;2-5
  18. C. Zhao, L. Ji, H. Liu, G. Hu, S. Zhang, M. Yang, and Z. Yang, J. Solid State Chem., 177, 4394 (2004) https://doi.org/10.1016/j.jssc.2004.09.036
  19. J. Liu, T. Xu, M. Gong, F. Yu, and Y. Fu, J. Membr. Sci., 283, 190 (2006) https://doi.org/10.1016/j.memsci.2006.06.027
  20. C. D. Bain and G. M. Whitesides, Science, 240, 62 (1988) https://doi.org/10.1126/science.240.4848.62
  21. C. D. Bain and G. M. Whitesides, J. Am. Chem. Soc., 111, 7164 (1989) https://doi.org/10.1021/ja00200a040
  22. F. Lim, X-H. Yu, and S. L. Cooper, Biomaterials, 14, 537 (1993) https://doi.org/10.1016/0142-9612(93)90243-U
  23. P. Claesson, Colloids Surf. A, 77, 109 (1993) https://doi.org/10.1016/0927-7757(93)80107-P
  24. D. K. Han, S. Y. Jeong, Y. H. Kim, B. G. Min, and H. I. Cho, J. Biomed. Mater. Res., 25, 561 (1991) https://doi.org/10.1002/jbm.820250502
  25. D. K. Han, K. D. Park, and Y. H. Kim, J. Biomater. Sci. Polym. Ed., 9, 163 (1998) https://doi.org/10.1163/156856298X00497
  26. J. Yuan, C. Mao, J. Zhou, J. Shen, S. C. Lin, W. Zhu, and J. L. Fang, Polym. Int., 52, 1869 (2003) https://doi.org/10.1002/pi.1277
  27. K. Ishihara, H. Nomura, T. Mihara, K. Kurita, Y. Iwasaki, and N. Nakabayashi, J. Biomed. Mater. Res., 39, 323 (1998) https://doi.org/10.1002/(SICI)1097-4636(199802)39:2<323::AID-JBM21>3.0.CO;2-C
  28. Y. H. Kim, D. K. Han, K. D. Park, and S. H Kim, Biomaterials, 24, 2213 (2003) https://doi.org/10.1016/S0142-9612(03)00023-1
  29. J. H. Kim, J. S. Son, K. Park, J.-M. Kim, J.-J. Kim, K.-D. Ahn, and D. K. Han, Key Eng. Mater., 342, 805 (2007) https://doi.org/10.4028/www.scientific.net/KEM.342-343.805
  30. W. Tsai, M. Grunkemeier, and A. Horbett, J. Biomed. Mater. Res., 44, 130 (1999) https://doi.org/10.1002/(SICI)1097-4636(199902)44:2<130::AID-JBM2>3.0.CO;2-9
  31. Y. Tamada, E. A. Kulik, and Y. Ikada, Biomaterials, 16, 259 (1995) https://doi.org/10.1016/0142-9612(95)92126-Q
  32. D. K. Han, N. Y. Lee, K. D. Park, Y. H. Kim, H. I. Cho, and B. G. Min, Biomaterials, 16, 467 (1995) https://doi.org/10.1016/0142-9612(95)98819-Z