DOI QR코드

DOI QR Code

Ectopic Expression of Wild Rice OgGRP Gene Encoding a Glycine Rich Cell Wall Protein Confers Resistance to Botrytis cinerea Pathogen on Arabidopsis

  • Jeon, Eun-Hee (Department of Genetic Engineering, Dong-A University) ;
  • Chung, Eun-Sook (Department of Genetic Engineering, Dong-A University) ;
  • Lee, Hye-Young (Department of Genetic Engineering, Dong-A University) ;
  • Pak, Jung-Hun (Department of Genetic Engineering, Dong-A University) ;
  • Kim, Hye-Jeong (Department of Genetic Engineering, Dong-A University) ;
  • Lee, Jai-Heon (Department of Genetic Engineering, Dong-A University) ;
  • Moon, Byung-Ju (Department of Applied Biology, Dong-A University) ;
  • Jeung, Ji-Ung (National Crop Experiment Station, Rural Development Administration) ;
  • Shin, Sang-Hyun (Department of Agronomy and Plant Genetics, University of Minnesota) ;
  • Chung, Young-Soo (Department of Genetic Engineering, Dong-A University)
  • Published : 2009.06.30

Abstract

A full-length cDNA of OgGRP gene encoding a glycinerich cell wall protein was isolated from wild rice (Oryza grandiglumis). Deduced amino acid sequences of OgGRP are composed of 148 amino acids (16.3 kDa), and show 85.9% homology with Osgrp-2 (Oryza sativa). RT-PCR analysis showed that RNA expression of OgGRP was regulated by defense-related signaling chemicals, such as cantharidin, endothall, jasmonic acid, wounding, or yeast extract treatment. In relation to pathogen stress, the function of OgGRP was analyzed in OgGRP over-expressing Arabidopsis thaliana. Overexpression of OgGRP in Arabidopsis contributed to moderate resistance against fungal pathogen, Botrytis cinerea, by lowering disease rate and necrosis size. In the analysis of the transgenic Arabidopsis lines to check the change of gene expression profile, induction of PR1, PR5 and PDF1.2 was confirmed. The induction seemed to be caused by the interaction of ectopic expression of OgGRP with SA-and JA-dependent signaling pathways.

Keywords

References

  1. Cassab, G. I. 1998. Plant cell wall proteins. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49:281-309 https://doi.org/10.1146/annurev.arplant.49.1.281
  2. Clough, S. J. and Bent, A. F. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16:735-743 https://doi.org/10.1046/j.1365-313x.1998.00343.x
  3. de Oliveira, D. E., Seurinck, J., Inze, D., Van Montagu, M. and Botterman, J. 1990. Differential expression of five Arabidopsis genes encoding glycine-rich proteins. Plant Cell 2:427-436 https://doi.org/10.1105/tpc.2.5.427
  4. Elad, Y. 1997. Responses of plants to infection by Botrytis cinerea and novel means involved in reducing their susceptibility to infection. Biol. Rev. Comb. Philos. Soc. 72:381-422 https://doi.org/10.1017/S0006323197005057
  5. Fang, R. X., Pang, Z., Gao, D. M., Mang, K. Q. and Chua, N. H. 1991. cDNA sequences of a virus-inducible, glycine-rich protein gene from rice. Plant Mol. Biol. 17: 1255-1257 https://doi.org/10.1007/BF00028742
  6. Hooft, van Huijsduijnen R. A. M., van Loon, L. C. and Bol, J. F. 1986. cDNA cloning of six mRNAs induced by TMV infection of tobacco and a characterization of their translation products. EMBO J. 5:2057-2061
  7. Jeon, E. H., Chung, E. S., Pak, J. H., Nam, J. S., Cho, S. K., Shin, S. H., Kim, D. H., Kim, G. T., Lee, J. H., Kang, K. H. and Chung, Y. S. 2008. Overexpression of OgPAE1 from wild rice confers fimgal resistance against Botrytis cinerea. J. Plant Res. 121:435-440 https://doi.org/10.1007/s10265-008-0164-x
  8. Kaldenhoff, R. and Richter, G. 1989. Sequence of cDNA for a novel light induced glycine-rich protein. Nucleic Acids Res. 17:2853 https://doi.org/10.1093/nar/17.7.2853
  9. Keller, B., Templeton, M. D. and Lamb, C. J. 1989. Specific localization of a plant cell wall glycine-rich protein in protoxylem cells of the vascular system. Proc. Natl. Acad. Sci. USA 86: 1529-1533 https://doi.org/10.1073/pnas.86.5.1529
  10. Keller, B. 1993. Structural cell wall proteins. Plant Physiol. 101:1127-1130 https://doi.org/10.1104/pp.101.4.1127
  11. Kim, B. R., Nam, H. Y., Kim, S. U., Kim, S. I. and Chang, Y. J. 2003. Normalization of reverse transcription quantitative-PCR with housekeeping genes in rice. Biotechnol. Lett. 25: 1869-1872 https://doi.org/10.1023/A:1026298032009
  12. Kim, K. M., Cho, S. K., Shin, S. H., Kim, G. T., Lee, J. H., Oh, B. J., Kang, K. H., Hong, J. C., Choi, J. Y., Shin, J. S. and Chung, Y. S. 2005. Analysis of differentially expressed transcripts of fimgal elicitor- and wound-treated wild rice (Oryza grandiglumis). J. Plant Res. 118:347-354 https://doi.org/10.1007/s10265-005-0228-0
  13. Kyte, J. and Doolittle, R. F. 1982. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157: 105-132 https://doi.org/10.1016/0022-2836(82)90515-0
  14. Lin, W. C., Cheng, M. L., Wu, J. W., Yang, N. S. and Cheng, C. P. 2005. A glycine-rich protein gene family predominantly expressed in tomato roots, but not in leaves and ripe fruit. Plant Sci. 168:283-295 https://doi.org/10.1016/j.plantsci.2004.03.017
  15. Lu, Y. Y, Liu, Y. H. and Chen, C. Y. 2007. Stomatal closure, callose deposition, and increase of LsGRP i-corresponding transcript in probenazole-induced resistance against Botrytis elliptica in lily. Plant Sci. 172:913-919 https://doi.org/10.1016/j.plantsci.2006.12.020
  16. Luo, M., Lin, L. H., Hill, R. D. and Mohapatra, S. S. 1991. Primary structure of an environmental stress and abscisic acidinducible alfalfa protein. Plant Mol. Biol. 17: 1267-1269 https://doi.org/10.1007/BF00028745
  17. MacKintosh, C., Lyon, G. D. and MacKintosh, R. W. 1994. Protein phosphatase inhibitors activate anti-fungal defence responses of soybean cotyledons and cell cultures. Plant J. 5:137-147 https://doi.org/10.1046/j.1365-313X.1994.5010137.x
  18. Molina, A., Mena, M., Carbonero, P. and Garcia-Olmedo, F. 1997. Differential expression of pathogen-responsive genes encoding two types of glycine-rich proteins in barley. Plant Mol. Biol. 33:803-810 https://doi.org/10.1023/A:1005712803130
  19. Nicolas, C., Rodriguez, D., Poulsen, F., Eriksen, E. N. and Niicolas, G 1997. The expression of an abscisic acid-responsive glycine-rich protein coincides with the level of seed dormancy in Fagus sylvatica. Plant Cell Physiol. 38:1303-1310 https://doi.org/10.1093/oxfordjournals.pcp.a029122
  20. Park, A. R., Cho, S. K., Yun, U. J., Jin, M. Y., Lee, S. H., Sachetto-Martins, G. and Park, O. K. 2001. Interaction of the Arabidopsis receptor protein kinase Wak 1 with a glycine rich protein, AtGRP 3. J. Biol. Chem. 276:26688-26693 https://doi.org/10.1074/jbc.M101283200
  21. Pawlowski, K., Twigg, P., Dobritsa, S., Guan, C. and Mullin, B. C. 1997. A nodule-specific gene family from Alnus glutinosa encodes glycine- and histidine-rich proteins expressed in the early stages of actinorhizal nodule development. Mol. Plant-Microbe Interact. 10: 656-664 https://doi.org/10.1094/MPMI.1997.10.5.656
  22. Prins, T. W., Tudzynski, P., von Tiedemann, A., Tudzynski, B., ten Have, A., Hansen, M. E., Tenberge, K. and van Kan, J. A. L. 2000. Infection strategies of Botrytis cinerea and related necrotrophic pathogens. In: Fungal Pathology, ed. by J. W. Kronstad, p.33-64. Kluwer Academic Publishers. Dordrecht, The Netherlands
  23. Rakwal, R., Kumar Agrawal, G. and Jwa, N. S. 2001. Characterization of a rice (Oryza sativa L.) Bowman-Birk proteinase inhibitor: tightly light regulated induction in response to cut, jasmonic acid, ethylene and protein phosphatase 2A inhibitors. Gene 263:189-198 https://doi.org/10.1016/S0378-1119(00)00573-4
  24. Reddy, A. S. N. and Poovaiah, B. W. 1987. Accumulation of a glycine-rich protein in auxin-deprived strawberry fruits. Bio-Chem. Biophys. Res. Commun. 147:885-891 https://doi.org/10.1016/S0006-291X(87)80153-5
  25. Sachetto-Martins, G., Franco, L. O. and de Oliveira, A. D. 2000. Plant glycine rich-proteins, a gene family or just a common motif? Biochim. Biophys. Acta 1492:1-14 https://doi.org/10.1016/S0167-4781(00)00064-6
  26. Showalter, A M. 1993. Structure and function of plant cell wall proteins. Plant Cell 5:9-23 https://doi.org/10.1105/tpc.5.1.9
  27. Thomma, B. P., Eggermont, K., Penninckx, I. A, Mauch-Mani, B., Vogelsang, R., Cammue, B. P. and Broekaert, W. F 1998. Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc. Natl. Acad. Sci. USA 95:15107-15111 https://doi.org/10.1073/pnas.95.25.15107
  28. Thompson, J. D., Gibson, T. J., Plewniak, F, Jeanmougin, F. and Higgins, D. G 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25:44876-44882 https://doi.org/10.1093/nar/25.24.4876
  29. Vaughan, D. A 1994. The wild relatives of rice-a genetic resources handbook. p. 3-24. IRRI, Manila, Philipines
  30. Wyatt, S. E. and Carpita, N. C. 1993. The plant-cytoskeleton-cellwall continuum. Trends Cell Biol. 3 :413-417 https://doi.org/10.1016/0962-8924(93)90022-S
  31. Zimmerli, L., Metraux, J. P. and Mauch-Mani, B. 2001. $\beta$-Aminobutyric acid-induced protection of Arabidopsis against the necrotrophic fungus Botrytis cinerea. Plant Physiol. 126:517-523 https://doi.org/10.1104/pp.126.2.517

Cited by

  1. Ectopic expression of ubiquitin-conjugating enzyme gene from wild rice, OgUBC1, confers resistance against UV-B radiation and Botrytis infection in Arabidopsis thaliana vol.427, pp.2, 2012, https://doi.org/10.1016/j.bbrc.2012.09.048