The neuroprotective effects of Nokyongdaebo-tang(Lurongdabutang) treatment in pathological Alzheimer's disease model of neural tissues

Alzheimer's Disease 병태모델에서 녹용대보탕(鹿茸大補湯)의 신경세포 보호효과

  • Cheong, Myong-Hee (Dept. of Oriental Neuropsychiatry College of Oriental Medicine, Daejeon University) ;
  • Jung, In-Chul (Dept. of Oriental Neuropsychiatry College of Oriental Medicine, Daejeon University) ;
  • Lee, Sang-Ryong (Dept. of Oriental Neuropsychiatry College of Oriental Medicine, Daejeon University)
  • 정명희 (대전대학교 한의과대학 신경정신과교실) ;
  • 정인철 (대전대학교 한의과대학 신경정신과교실) ;
  • 이상룡 (대전대학교 한의과대학 신경정신과교실)
  • Published : 2009.06.30

Abstract

Objectives : Alzheimer's disease(AD) is the most common form of dementia, which is characterized by progressive deterioration of memory and higher cortical functions that ultimately results in total degradation of intellectual and mental activities. Nokyongdaebo-tang(Lurongdabutang) has been usually used for the treatment for the deficiency syndrome dementia and amnesia. This experiment was designed to investigate the effect of the Nokyongdaebo-tang(Lurongdabutang) hot water extract on pathological AD model. Methods : The effects of the Nokyongdaebo-tang(Lurongdabutang) hot water extract on cultured spinal cord cells induced by ${\beta}$-amyloid were investigated. The effects of the Nokyongdaebo-tan(Lurongdabutang) hot water extract on the memory deficit mice induced by scopolamine were investigated. Results : 1. ${\beta}$-amyloid treatment on cultured spinal cord cells increased both GFAP-staining intensity of astrocytes and caspase 3 immunoreactivity on cultured cells. Then, Nokyongdaebo-tang(Lurongdabutang) treatment reduced the labeling intensity for both GFAP and caspase 3 proteins in culture cells. 2. Scopolamine treatment into mice increased levels of GFAP-positive astrocytes and caspase 3-labeled cells of the hippocampal subfields dentate hilar region, CA3 and CA1 area. In vivo administration of Nokyongdaebo-tang(Lurongdabutang) attenuated labeling intensity for those two proteins in the same hippocampal areas. Similar effects were observed by the treatment of galanthamine, an inhibitor of acetylcholinesterase. Conclusions : This experiment shows that the Nokyongdaebo-tang(Lurongdabutang) may play a protective role in damaged neural tissues. Since neuronal damage seen in degenerative brains such as AD are largely unknown, the current data may provide possible insight into therapeutic strategies for AD treatments. Nokyongdaebo-tang(Lurongdabutang) might be effective for the prevention and treatment of AD.

Keywords

References

  1. 대한치매학회. 치매 임상적 접근. 서울:아카데미아. 2006:201, 23-4, 233-6, 30-4.
  2. Gandy SE, Buxbaum JD, Suzuki T, Ramabhadran TV, Caporaso GL, Nairn AC, Greengard P. The nature and metabolism of potentially amyloidogenic carboxyl-terminal fragments of the Alzheimer $\beta$/A4-amyloid precursor protein: some technical notes. Neurobiol Aging. 1992;13(5):601-3. https://doi.org/10.1016/0197-4580(92)90063-4
  3. Quon D, Wang Y, Catalano R, Scardina JM, Murakami K, Cordell B. Formation of $\beta$-amyloid protein deposits in brains of transgenic mice. Nature. 1991;352(6332):239-41. https://doi.org/10.1038/352239a0
  4. Downey D. Pharmacologic management of Alzheimer disease. J Neurosci Nurs. 2008;40(1):55-9. https://doi.org/10.1097/01376517-200802000-00009
  5. Games D, Adams D, Alessandrini R, Barbour R, Berthelette P, Blackwell C, Carr T, Clemens J, Donaldson T, Gillespie F, et al. Alzheimer-type neuropathology in transgenic mice overexpressing V717F $\beta$-amyloid precursor protein. Nature. 1995;373(6514):523-7. https://doi.org/10.1038/373523a0
  6. Hsiao KK, Borchelt DR, Olson K, Johannsdottir R, Kitt C, Yunis W, Xu S, Eckman C, Younkin S, Price D, et al. Age-related CNS disorder and early death in transgenic FVB/N mice overexpressing Alzheimer amyloid precursor proteins. Neuron. 1995;15(5):1203-18. https://doi.org/10.1016/0896-6273(95)90107-8
  7. Alreja Meenakshi, Min Wu, Weimin Liu, Joshua B. Atkins, Csaba Leranth, and Marya Shanabrough Muscarinic Tone Sustains Impulse Flow in the Septohippocampal GABA But Not Cholinergic Pathway: Implications for Learning and Memory. J. Neurosci. 2000;20:8103-10.
  8. Winters Boyer D, Lisa M. Saksida, Timothy J. Bussey. Paradoxical Facilitation of Object Recognition Memory after Infusion of Scopolamine into Perirhinal Cortex: Implications for Cholinergic System Function. J. Neurosci. 2006;26:9520-9. https://doi.org/10.1523/JNEUROSCI.2319-06.2006
  9. Bellucci A, Luccarini I, Scali C, Prosperi C, Giovannini MG, Pepeu G, Casamenti F. Cholinergic dysfunction, neuronal damage and axonal loss in TgCRND8 mice. Neurobiol Dis. 2006;23(2):260-72. https://doi.org/10.1016/j.nbd.2006.03.012
  10. 전국한의과대학 신경정신과 교과서편찬위원회. 한의신경정신과학. 경기도:집문당. 2007:324-33.
  11. 李鋌 . 국역의학입문. 서울:남산당. 1974:96, 102, 880.
  12. 동의학사전 편찬위원회. 東醫學辭典. 서울:동방의학사. 2001:215.
  13. 서규태. 鹿茸大補湯이 \beta-amyloid로 誘導된 Alzheimer's Disease 病態 모델에 미치는 影響. 대구한의대학교 대학원. 2007.
  14. 김현수, 이상룡, 정인철. 洗心湯 열수추출물, 초미세분말제형이 Alzheimer's Disease 병태모델에 미치는 영향. 동의생리병리학회지. 2007;21(3):688-99.
  15. 최강욱, 이상룡, 정인철. 聰明湯과 木槿皮聰明湯 열수추출물, 초미세분말제형이 microglia 및 기억력 감퇴 병태모델에 미치는 영향. 동의생리병리학회지. 2006;20(5):1200-10.
  16. Banker G, Goslin, K. Culturing nerve cells. 2nd edition. Cambridge, USA:MIT Press. 2002.
  17. Schwab C, McGeer PL. Inflammatory aspects of Alzheimer disease and other neurodegenerative disorders. J Alzheimers Dis. 2008;13(4):359-69. https://doi.org/10.3233/JAD-2008-13402
  18. Hua X, Lei M, Ding J, Han Q, Hu G, Xiao M. Pathological and biochemical alterations of astrocytes in ovariectomized rats injected with D-galactose: a potential contribution to Alzheimer's disease processes. Exp Neurol. 2008;210(2):709-18. https://doi.org/10.1016/j.expneurol.2008.01.009
  19. Dodart JC, May P. Overview on rodent models of Alzheimer's disease. Curr Protoc Neurosci. 2005;Chapter 9:Unit 9.22.
  20. Mhatre M, Floyd RA, Hensley K. Oxidative stress and neuroinflammation in Alzheimer's disease and amyotrophic lateral sclerosis: common links and potential therapeutic targets. Journal of Alzheimer's disease. 2004;6(2):147-57. https://doi.org/10.3233/JAD-2004-6206
  21. 안준익, 이용성. Beta-amyloid의 분자생물학. 한양의대학술지. 2001;21(1):11-6.
  22. 張介賓. 張氏景岳全書. 서울:翰成社. 1978:610-1.
  23. 錢鏡湖. 辨證奇問全書. 台北:甘地出版社. 1990:222-5, 233-5.
  24. 陳士鐸. 石室秘錄. 北京:中國中醫藥出版社. 1991:125.
  25. 洪元植. 精校黃帝內經素問. 서울:洋醫學硏究院. 1985:37, 124, 196, 217-8, 229.
  26. Abu-Absi NR, Zamamiri A, Kacmar J, Balogh SJ, Srienc F. Automated flow cytometry for acquisition of time-dependent population data. Cytometry. 2003;51A(2):87-96. https://doi.org/10.1002/cyto.a.10016
  27. Unger JW. Glial reaction in aging and Alzheimer's disease. Microsc Res Tech. 1998;43(1):24-8. https://doi.org/10.1002/(SICI)1097-0029(19981001)43:1<24::AID-JEMT4>3.0.CO;2-P
  28. Kobayashi K, Hayashi M, Nakano H, Shimazaki M, Sugimori K, Koshino Y. Correlation between astrocyte apoptosis and Alzheimer changes in gray matter lesions in Alzheimer's disease. J Alzheimer's Dis. 2004;6(6):623-32, 673-81.
  29. Yiu G, He Z. Glial inhibition of CNS axon regeneration. Nat Rev Neurosci. 2006;7(8):617-27. https://doi.org/10.1038/nrn1956
  30. Fields RD, Stevens-Graham B. New insights into neuron-glia communication. Science. 2002;298(5593):556-62. https://doi.org/10.1126/science.298.5593.556
  31. Vassar R. Caspase-3 cleavage of GGA3 stabilizes BACE: implications for Alzheimer's disease. Neuron. 2007;54(5):671-3. https://doi.org/10.1016/j.neuron.2007.05.018
  32. Carreiras MC, Marco JL. Recent approaches to novel anti-Alzheimer therapy. Curr Pharm Des. 2004;10(25):3167-75. https://doi.org/10.2174/1381612043383421
  33. Simic G, Kostovic I, Winblad B, Bogdanovic N. Volume and number of neurons of the human hippocampal formation in normal aging and Alzheimer's disease. J Comp Neurol. 1997;379(4):482-94. https://doi.org/10.1002/(SICI)1096-9861(19970324)379:4<482::AID-CNE2>3.0.CO;2-Z
  34. Marco L, do Carmo Carreiras M. Galanthamine, a natural product for the treatment of Alzheimer's disease. Recent Patents CNS Drug Discov. 2006;1(1):105-11. https://doi.org/10.2174/157488906775245246
  35. Eckert A, Marques CA, Keil U, Schussel K, Muller WE. Increased apoptotic cell death in sporadic and genetic Alzheimer's disease. Ann N Y Acad Sci. 2003;1010:604-9. https://doi.org/10.1196/annals.1299.113
  36. Standridge JB. Vicious cycles within the neuropathophysiologic mechanisms of Alzheimer's disease. Curr Alzheimer Res. 2006;3(2):95-108. https://doi.org/10.2174/156720506776383068
  37. Litvan I, Sirigu A, Toothman J, Grafman J. What can preservation of autobiographic memory after muscarinic blockade tell us about the scopolamine model of dementia? Neurology. 1995;45(2):387-9. https://doi.org/10.1212/WNL.45.2.387
  38. Raschetti R, Albanese E, Vanacore N, Maggini M. Cholinesterase inhibitors in mild cognitive impairment: a systematic review of randomised trials. PLoS Med. 2007;4(11):338. https://doi.org/10.1371/journal.pmed.0040338