DOI QR코드

DOI QR Code

The LDA+U Effect on the Electronic Structure and Magnetism of Bulk, Monolayer, and Linear Chain of Iron

덩어리, 단층 및 사슬 구조 철의 전자구조와 자성에 대한 LDA+U 효과

  • ;
  • ;
  • 이재일 (인하대학교 물리학과)
  • Published : 2009.06.30

Abstract

We examine the effect of U term (U = 3 eV) describing the Coulomb interactions between electrons on the results of electronic band structure calculations carried out for bcc Fe bulk, monolayer, and chain. We investigated the properties of the three Fe structures by using the all-electron total-energy full-potential linearized augmented plane wave method. The U term was included in the exchange - correlation functionals constructed on the basis of local density approximation (LDA) and general gradient approximation (GGA). We found that in the case of bcc Fe bulk structure inclusion of the U term leads to the overestimated values of magnetic moment on Fe atom. The values of magnetic moment calculated for Fe in monolayer and chain are in accordance with calculations in which the U term was not included. In general, for each system the calculated values of magnetic moment on Fe sites were larger when the U term was incorporated in the energy functional. In Fe bulk, the value of magnetic moment $2.54{\mu}_B$ for LDA+U larger than $2.25{\mu}_B$ for LDA.

상관효과 U가 전자구조와 자성에 미치는 영향을 검토하기 위하여 대표적 자성물질인 철의 덩어리, 단층 및 사슬 구조에 대해 연구하였다. 이를 위하여 U = 3 eV로 택하여, 총 퍼텐셜 보강 평면파동 에너지 띠 방법을 이용하여 LDA+U 및 GGA+U 근사 하에 전자구조 계산을 수행하였다. 비교를 위하여 LDA 및 GGA를 이용한 계산도 수행하였다. 그 결과 U의 효과를 포함시켰을 때 덩어리 철의 경우 자기모멘트가 $0.3{\mu}_B$ 증가하여 실험값이나 LDA 및 GGA 계산에 비해 과다하게 계산되는 것으로 나타났으나, 단층이나 사슬의 경우는 그렇게 큰 차이를 보이지 않았다. 이로부터 전자구조 계산 시대상 계에 따라 U의 효과를 적절히 고려하여야 함을 알았다.

Keywords

References

  1. V. I. Anisimov, J. Zaanen, and O. K. Andersen, Phys. Rev. B, 44, 943 (1991) https://doi.org/10.1103/PhysRevB.44.943
  2. E. Wimmer, H. Krakauer, M. Weinert, and A. J. Freeman, Phys. Rev. B, 24, 864 (1981) and references therein https://doi.org/10.1103/PhysRevB.24.864
  3. M. Weinert, E. Wimmer, and A. J. Freeman, Phys. Rev. B, 26, 4571 (1982) https://doi.org/10.1103/PhysRevB.26.4571
  4. L. Hedin and B. I. Lundqvist, J. Phys. C, 4, 2064 (1971) https://doi.org/10.1088/0022-3719/4/14/022
  5. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 77, 3865 (1996) https://doi.org/10.1103/PhysRevLett.77.3865
  6. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 78, 1396 (E) (1997)
  7. V. I. Anisimov, F. Aryasetiawan, and A. I. Lichtenstein, J. Phys.: Cond. Mat., 9, 767 (1997) https://doi.org/10.1088/0953-8984/9/4/002
  8. C. A. F. Vaz, J. A. C. Bland, and G. Lauhoff, Rep. Prog. Phys., 71, 056501 (2008) and references therein https://doi.org/10.1088/0034-4885/71/5/056501
  9. S. Ohnishi, A. J. Freeman, and M. Weinert, Phys. Rev. B, 28, 6741 (1983) https://doi.org/10.1103/PhysRevB.28.6741
  10. R. Wu and A. J. Freeman, Phys. Rev. B, 47, 3904 (1993) https://doi.org/10.1103/PhysRevB.47.3904
  11. M. Weinert and A. J. Freeman, J. Magn. Magn. Mater., 38, 23 (1983) https://doi.org/10.1016/0304-8853(83)90098-7
  12. C. L. Fu, A. J. Freeman, and T. Oguchi, Phys. Rev. Lett., 54, 2700 (1985) https://doi.org/10.1103/PhysRevLett.54.2700
  13. J. J. Ying, I. G. Kim, and J. I. Lee, Phys. Stat. Sol. B, 241, 1431 (2004) https://doi.org/10.1002/pssb.200304570