DOI QR코드

DOI QR Code

지속하중을 받는 탄소섬유판의 장기 거동

Long-Term Behavior of CFRP Strips under Sustained Loads

  • 유영찬 (한국건설기술연구원 건축구조.자원연구실) ;
  • 최기선 (한국건설기술연구원 건축구조.자원연구실) ;
  • 김긍환 (한국건설기술연구원 건축구조.자원연구실)
  • You, Young-Chan (Building Structure & Resource Research Division, Korea Institute of Construction Technology) ;
  • Choi, Ki-Sun (Building Structure & Resource Research Division, Korea Institute of Construction Technology) ;
  • Kim, Keung-Hwan (Building Structure & Resource Research Division, Korea Institute of Construction Technology)
  • 발행 : 2009.04.30

초록

본 연구에서는 외부프리스트레스 탄소섬유판에 의한 보강기술에서 긴장력을 포함하는 지속하중이 작용하였을 때의 장기거동을 평가하기 위한 실험연구를 수행하였다. 지속하중 도입을 위한 실험계획은 탄소섬유판에 직접 인장력을 도입하는 직접 지속하중 방식과 휨 실험체를 통한 휨 지속하중으로 구분하여 실시하였다. 직접 지속하중에 의한 실험은 탄소섬유판의 종류별로 약 700일에 걸쳐 실시하여 탄소섬유판의 장기 크리프/릴렉세이션 등의 변형을 주로 평가하였으며, 휨 지속하중 실험에서는 탄소섬유판의 정착시 정착장치에서의 슬립량을 주로 평가하기 위해 약 90일 간으로 수행되었다. 일방향 탄소섬유판에 대한 2년간의 지속하중 실험 결과에 의하면, 탄소섬유판의 크리프나 릴렉세이션과 같은 재료자체의 변형 및 정착장치에서의 슬립에 기인한 응력손실은 적은 것으로 나타났다. 그러나, 강판매입형 탄소섬유판은 강판의 항복변형률을 초과하여 도입된 긴장력으로 인하여 재료 자체의 변형에 의한 자체 응력손실이 발생되었으므로 이에 대한 보완이 필요한 것으로 판단된다. 아울러, 탄소섬유판의 정착과정에 발생되는 긴장력의 즉시 손실량은 응력도입 초기의 약 10% 정도이므로 프리스트레스의 도입시에는 이를 고려하여 긴장력을 결정할 필요성이 있을 것으로 판단된다.

Experimental study was performed to evaluate the long-term behavior of CFRP (carbon fiber reinforced polymer) strips under sustained loads including prestressing force in strengthening RC members with post-tensioned CFRP strips. Two types of CFRP strip such as unidirectional CFRP strip and hybrid CFRP strip which is composed of carbon fiber and steel plate were considered. Also two types of loading scheme were included in this study. Direct sustained loading test had been carried out to estimate the creep deformation and relaxation of CFRP strips including slip deformation at both mechanical anchorages for over 700 days. Also, flexural sustained loading test had been conducted to estimate the initial prestress losses on clamping the CFRP strips at jacking anchorages for over 90 days. From the sustained loading tests, it was observed that stress losses of unidirectional CFRP strips due to the creep deformation and relaxation of material itself and slip deformation at mechanical anchorage were ignorable. On the other hand, significant stress losses caused by the yielding of steel embedded in CFRP strips were found in case of hybrid CFRP strips due to the initial jacking force over steel yielding stress. Also, initial prestress losses during setting of CFRP strips on mechanical anchorage were about 10% of intial jacking force, which must be considered in the design.

키워드

참고문헌

  1. ISIS Canada, Reinforcing Concrete Structure with Fibre Reinfirced Polymer, Design Manual No. 3, ISIS Canada, 2001, pp. 1.1-2.3.
  2. ISIS, Canada, Strengthening Reinforced Concrete Structures with Externally-Bonded Fibre Reinforced Polymers, Design Manual No. 4, ISIS Canada, 2001, 48 pp.
  3. Concrete Society, Design Guidance for Strengthening Concrete Structures Using Fibre Composite Materials, Technical Report No. 55, The Concrete Society, 2000, 39 pp.
  4. CSA Standard, Design and Construction of Building Components with Fibre-Reinforced Polymers, S806-02, Canadinl Standards Association, 2002, 36 pp.
  5. ACI 440.2R-02, Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures, ACI, 2002, pp. 11-12.
  6. 土木學會コンクリト委員會, コンクリト構造物の補强指針(案), 土木學會, 1999, pp. 62-66.
  7. El-Hacha, R., Wight, R. G, and Green, M. F., 2004, “Prestressed Carbon Fiber Reinforced Polymer Sheets for Strengthening Concrete Beams at Room and Low Temperatures,” J. Composite. for Construction, ASCE, Vol. 8, No. 1, pp. 3-13. https://doi.org/10.1061/(ASCE)1090-0268(2004)8:1(3)
  8. Lamanna, A. J., Bank, L. C., and Scott, D. W., “Flexural Strengthening of Reinforced Concrete Beams by Mechanically Attaching Fiber-Reinforced Polymer Strips,” Journal of Composites for Construction, ASCE, No. 3, 2004, pp. 203-210 https://doi.org/10.1061/(ASCE)1090-0268(2004)8:3(203)
  9. Triantafillou, T. C. and Deskovic, N., “Innovative Prestressing with FRP heets: Mechanics of Short-Term Behaviour,” Journal of Engineering Mechanics, ASCE, Vol. 117, No. 7, 1991, pp. 1652-1672. https://doi.org/10.1061/(ASCE)0733-9399(1991)117:7(1652)
  10. 박상렬, 양철영, 김창훈, “CFRP 긴장재를 이용한 외부보강 철근콘크리트 보의 극한 휨강도,” 대한토목학회 논문집, 27권, 5A호, 2007, pp. 671-679.
  11. 한만엽, 이재형, 이상열, “외부프리스트레스 보강 공법에 사용되는 인장형 단부 브래킷의 개발 연구,” 대한토목학회 논문집, 21권, 5A호, 2007, pp. 611-618.
  12. 심낙훈, 박영석, “강연선 또는 CFRP를 이용한 RC보의 외부 프리스트레싱 보강공법에 관한 실험적 연구,” 구조물진단학회논문집, 8권, 3호, 2004, pp. 207-215.
  13. 유영찬, 최기선, 박영환, 박종섭, 김긍환, “외부 부착형 프리스트레스트 탄소섬유판으로 보강된 RC보의 휨 거동,” 한국콘크리트학회 봄학술발표논문집, 17권, 1호, 2005, pp. 255-258.
  14. 유영찬, 최기선, 박영환, 박종섭, 김긍환, “외부 비부착형 프리스트레스트 탄소섬유판으로 보강된 RC보의 휨 거동,” 대한토목학회 정기학술대회논문집, Oct. 2005, pp. 627-630.
  15. 유영찬, 최기선, 박종섭, 박영환, 김긍환, “스터드형 정착장치를 이용한 외부 비부착 프리스트레스트 탄소섬유판보강 RC보의 휨 거동,” 한국구조물진단학회 봄학술발표논문집, 10권, 1호, 2006, pp. 197-202.
  16. 최기선, 유영찬, 박영환, 박종섭, 김긍환, “외부 프리스트레스트 탄소섬유판으로 보강된 실물모형 RC보의 휨 거동,” 한국구조물진단학회 봄학술발표논문집, 10권, 1호, 2006, pp. 303-308.
  17. Mathys, S. and Taerwe, L., Long-Term Behaviour of Concrete Slabs Pre-tensioned with AFRP or Prestressing Steel, in Durability of Fibre Reinforced Polymer (FRP) Composites for Construction, (Editors: Benmokrane, B. and Rahman, H.), 1998. pp. 95-106
  18. Sen, R., Shahawy, M., Rosas, J., and Sukumar, S., “Durability of Aramid Fiber Reinforced Plastic Pretensioned Elements Under Tidal/Thermal Cycles,” ACI Structural Journal, Vol. 96, No. 1, 1999, pp. 95-104.
  19. Braima, A., Long-Term Fatigue Behavior of Carbon Fiber Reinforced Polymer Prestressed Concrete Beams, Queen's University, Ontario, Canada, 2000, pp. 28-29, 102-104
  20. 박종섭, 박영환, 정우태, “지속하중을 받는 탄소섬유판부착 보강 철근콘크리트 보의 장기거동,” 한국구조물진단학회 봄학술발표대회논문집, 10권, 1호, 2006, pp. 209-214.
  21. 유영찬, 최기선, 김긍환, “외부프리스트레스트 탄소섬유판에 의한 RC구조물 보강공법의 정착시스템 기본형상결정시험,” 대한건축학회 추계학술발표대회논문집, 24권, 2호, 2004, pp. 143-146.
  22. 유영찬, 최기선, 박영환, 박종섭, 김긍환, “외부 프리스트레스트 탄소섬유판 정착장치의 콘크리트에 대한 정착성능,” 한국콘크리트학회 봄학술발표논문집, 18권, 1호, 2006, pp. 226-229.

피인용 문헌

  1. Combined Effects of Sustained Load and Temperature on Pull-off Strength and Creep Response between CFRP Sheet and Concrete Using Digital Image Processing vol.28, pp.5, 2016, https://doi.org/10.4334/JKCI.2016.28.5.535