Soil Characteristic of Plow and Compaction Layer in Fluvio-marine Deposit Paddy Soil

하해혼성 충적층 논토양 작토층과 경반층의 토양특성

  • Received : 2009.05.16
  • Accepted : 2009.06.01
  • Published : 2009.10.30

Abstract

This study was conducted to survey, analyze on the compaction layer and the plow layer at Jeonbug and Jisan series paddy soil, which is the representative soil in fluvio-marine and local alluvium, respectively. The depths of surface soil were 12.6 and 12.7 cm in Jeonbug and Jisan series, respectively. A plowing depth was 10.5 cm. The properties of compaction layer in two soil series were as follows. The hardness were $14.7kg\;cm^{-2}(25.3mm)$ and $8.7kg\;cm^{-2}(22.1mm)$ in Jeonbug and Jisan series, respectively. The thickness were 22.3 cm and 17.8 cm in Jeonbug and Jisan series, respectively. The depth of soil compaction, which means depth from surface, were 15 and 20 cm in Jeonbug and Jisan series, respectively. The relationship between the hardness of compaction layer and the depth of surface soil showed negative correlation, however relationship between the hardness and the thickness of compaction layer showed positive correlation. Soil temperature was lower in compaction layer than in plow layer. This temperature differences between compaction layer and plow layer were from 1.0 to $2.5^{\circ}C$ in Jeonbug series and from 0.7 to 2.1 in Jisan series. The soil physical properties of compaction layer were higher in bulk density and solid phase and lower in porosity and gaseous phase than those of plow layer in all soil series. The soil chemical properties of compaction layer were higher in pH, content of available silicate, exchangeable calcium and magnesium but lower in total nitrogen, content of organic matter and available phosphate than those of plow layer in all soil series. Cation exchangeable capacity and content of exchangeable potassium were similar between compaction layer and plow layer in Jeonbug series, however, in Jisan series these were lower in compaction layer than in plow layer. Elution amount of inorganic nitrogen were lower in compaction layer than in plow layer in all soil series. The content of soluble Fe and Mn were plenty in compaction layer compared with plow layer and these tendency was apparent in Jeonbug series. The water depth decrease were fast until the latter part of June, and were slow as $1{\sim}3mm\;day^{-1}$ for July and August, and were fast again from september. Rice roots distributions as each soil series and tillage method were 25 cm at rotary plowing in Jeonbug series, 30 cm at deep plowing in Jeonbug series, and 20 cm at tillage in Jisan series. Dry weight per m2 at heading stage were much in order of deep plowing in Jeonbug series, rotary plowing in Jeonbug series, and tillage in Jisan series.

벼 재배시 하해혼성층 논토양의 전북통과 지산통 작토층과 경반층의 특성을 2년간(2005~2006)조사 분석한 결과를 요약하면 다음과 같다. 하해혼성층적층 대표토양인 전북통과 곡간충적층 대표토양인 지산통을 10개소에서 조사한 결과 작토심은 전북통 12.6 cm, 지산통 12.7 cm 이었고 플라우 경운깊이는 120필지에서 조사한 결과 10.5 cm 이었으며 전북통에서 경도와 작토심과는 부의 상관을, 경도와 경반층 두께와는 정의 상관을 나타냈다. 경반층 경도는 전북통 $14.7kg\;cm^{-2}(25.3mm)$, 지산통 $8.7kg\;cm^{-2}(22.1mm)$ 이었고, 두께는 전북통 22.3 cm, 지산통 17.8 cm 이었으며 경반층 출현깊이는 전북통 15 cm, 지산통 20 cm에 있었다. 경반층 지온은 작토층과의 차이를 보면 전북통에서는 봄 $-2.0^{\circ}C$, 여름 $-2.5^{\circ}C$, 가을 $-1.0^{\circ}C$를 지산통은 봄 $-2.1^{\circ}C$, 여름 $-1.8^{\circ}C$, 가을 $-0.7^{\circ}C$를 나타냈고 전북통에서 산화환원전위차 변화는 작토층은 유수형성기부터 환원상태를 경반층은 출수후기까지 산화상태를 나타냈다. 토양물리성은 두 토양통 공히 경반층에서 용적밀도, 고상율이 높고 공극율, 기상율이 낮았다. 또한 토양화학성은 경반층에서 총질소가 낮았고, 유기물 및 유효 인산함량이 적은 반면에 pH가 높고, 유효규산, 치환성칼슘 및 마그네슘 함량이 많았다. 양이온치환용량은 전북통에서 작토층 및 경반층 비슷한 경향이었으나 지산통은 경반층에서 다소 낮은 경향을 나타냈다. 무기태질소 함량은 토양통 공히 작토층에서 많았고, 가용성 미량성분 함량은 경반층에서 많았으며 지산통에서 많은 경향을 나타냈다. 감수심은 전북통에서 심경구, 지산통 경운구는 로타리구보다 빠르고, 계절별 감수심 변화는 6월 하순까지는 감수심이 빨랐으나 7~8월에는 1~3 mm로 늦었으며 9월부터는 빠른 경향을 나타냈다. 벼 뿌리분포는 로타리 25 cm, 심경 30 cm, 경운 20 cm까지 신장하였고, 출수기 뿌리 건물중은 심경>로타리>경운 순으로 무거웠다.

Keywords

References

  1. Adachi, M.D., K.S. Kodama, C. Kominami, I. Hukajawa, K.S. Jinbou, and S.S. Gotou. 1987. The actual condition on tillage operations of paddy field in Yamagata. Research report of Yamagata agricultural experiment station. 22; 163-176
  2. ASI. 1992. General remarks of Korean soils. p.308-610. Agricultural Sciences Institute, Suwon, Korea
  3. HARI. 2005. Technology on paddy soil management in Honam plain field. p. 31-53. Honam Agriculture Research Institute, Iksan, Korea
  4. Jo, I.S., J.N. Im, J.D. So, S.Y. Lee, and D.U. Choi. 1983. The effects of soil physical improvement on rice yields at fine textured Fluvio-Marine paddy field. Korean Soc. Soil Sci. Fert. 16: 92-97
  5. NIAST. 2000. Methods of soil and crop plant analysis. National Institute of Agricultural Science and Tcchnology, Suwon, Korea
  6. RCA. 1984. Diagnosis of crop growth and soil. An outline of agricultural technique. p. 81-92. Rural Culture Association, Tokyo, Japan
  7. RDA. 1998. Investigation and standard for agricultural experiment. Rural Development Administration, Suwon, Korea
  8. Sibata, G.H. 1988. The cause and measure yield loss on high temperature in paddy rice. Agriculture & Horiculture. 63: 1059-1063
  9. Takisima, K.H. and K. Sakuma. 1969. The effects of soil hardness and compression on growth and development root system in paddy rice. Research report of agricultural techniques. 21: 255-328
  10. Yoo, C.H., C.H. Yang, T.K. Kim, J.H. Ryu, B.S. Kim, J.D. Kim, and K.Y. Jung. 2006. The effect of popped rice hulls compost application on soil chemical and physical properties in Fluviomarine plain paddy soils. J. Korean Soc. Soil Sci. Fert. 39: 403-408
  11. 五十崎恒. 1956. 適正浸透量について. 農土硏. 24: 311-319
  12. 前田乾一, 出井嘉光. 1973. 肥料連用が水田作土の土壤構造 におよぽす影響. 農事試驗硏究報告. 第18號: 117-134
  13. 字野要次. 1965. 水稻土壤の機械化適性實態調査成績. 農技 硏化學部, 土壤第2 科: 5-10
  14. 佐藤侯夫, 藤井弘志, 荒坦憲一, 渡部幸一郞. 1990. 深耕時における下層土の窒素肥沃性と水稻生育について. 日土肥 誌. 61: 198-201