References
- Aulakh, M.S., J. Bodenbender, R. Wassmann, and H. Rennenberg. 2000. Methane transport capacity of rice plants. II. Variations among different rice cultivars and relationship with morphological characteristics. Nutr. Cycl. Agroecosyst. 58, 367-375 https://doi.org/10.1023/A:1009839929441
- Castro, H.F. 2003. Microbial ecology of anaerobic terminal carbon mineralization in Everglades soils, with emphasis on sulfate reducing prokaryotic assemblages. Ph. D. thesis. University of Florida, Gainesville, Florida, USA
- Chauhan, A., A. Ogram, and K.R. Reddy. 2004. Syntrophic-methanogenic associations along a nutrient gradient in the Florida Everglades. Appl. Environ. Microbiol. 70, 3475-3484 https://doi.org/10.1128/AEM.70.6.3475-3484.2004
- Chin, K.J., T. Lueders, M.W. Friedrich, M. Klose, and R. Conrad. 2004. Archaeal community structure and pathway of methane formation on rice roots. Microb. Ecol. 47, 59-67 https://doi.org/10.1007/s00248-003-2014-7
- Escoffier, S., B. Ollivier, J. LeMer, J. Garcin, and P. Roger. 1998. Evidence and quantification of thiosulfate reducers unable to reduce sulfate in rice field soils. Eur. J. Soil Biol. 34, 69-74 https://doi.org/10.1016/S1164-5563(99)90003-1
- Harada, N., M. Nishiyama, and S. Matsumoto. 2001. Inhibition of methanogens increases photo-dependent nitrogenase activities in anoxic paddy soil amended with rice straw. FEMS Microbiol. Ecol. 35, 231-238 https://doi.org/10.1111/j.1574-6941.2001.tb00808.x
- Lee, K.B. 1997. Influence of different rice varieties on emission of methane in soil and exudation of carbohydrates in rhizosphere. Korean J. Soil Sci. Fert. 30, 257-264
- Lee, K.B. 1999. Methane emission among rice ecotypes in Korean paddy soil. Korean J. Environ. Agricul. 18, 1-5
- Li, J., M. Wang, H. Yao, and Y. Wang. 2002. New estimates of methane emissions from Chinese rice paddies. Nutr. Cycl. Agroecosyst. 64, 33-42 https://doi.org/10.1023/A:1021184314338
- Liesack, W., S. Schnell, and N.P. Revsbech. 2000. Microbiology of flooded rice paddies. FEMS Microbiol. Rev. 24, 625-645 https://doi.org/10.1111/j.1574-6976.2000.tb00563.x
- Lu, W.F., W. Chen, B.W. Duan, W.M. Guo, R.S. Lantin, R. Wassmann, and H.U. Neue. 2000. Methane emissions and mitigation options in irrigated rice fields in southeast China. Nutr. Cycl. Agroecosyst. 58, 65-73 https://doi.org/10.1023/A:1009830232650
- Lu, Y., T. Lueders, M.W. Friedrich, and R. Conrad. 2005. Detecting active methanogenic populations on rice roots using stable isotope probing. Environ. Microbiol. 7, 326-336 https://doi.org/10.1111/j.1462-2920.2005.00697.x
- Lueders, T. and M.W. Friedrich. 2002. Effects of amendment with ferrihydrite and gypsum on the structure and activity of methanogenic populations in rice field soil. Appl. Environ. Microbiol. 68, 2484-2494 https://doi.org/10.1128/AEM.68.5.2484-2494.2002
- Luton, P.E., J.M. Wayne, R.J. Sharp, and P.W. Riley. 2002. The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiology 148, 3521-3530 https://doi.org/10.1099/00221287-148-11-3521
- Min, H., Y.H. Zhao, M.C. Chen, and Y. Zhao. 1997. Methanogens in paddy rice soil. Nutr. Cycl. Agroecosyst. 49, 163-169 https://doi.org/10.1023/A:1009786803433
- Mitra, A.P., P.K. Gupta, and C. Sharma. 2002. Refinement in methodologies for Methane budget estimation from Rice paddies. Nutrient Cycling Agroecosystems 64, 147-155 https://doi.org/10.1023/A:1021180213429
- Mphande, A.C., R.K. Malik, and P. Tauro. 1995. Methane emission and methanogen status of Indian rice soil. Biores. Technol. 55, 155-158 https://doi.org/10.1016/0960-8524(95)00120-4
- Nakagawa, F., N. Yoshida, A. Sugimoto, E. Wada, T. Yoshioka, S. Ueda, and P. Vijarnsorn. 2002. Stable isotope and radiocarbon compositions of methane emitted from tropical rice paddies and swamps in Southern Thailand. Biogeochemistry 61, 1-19 https://doi.org/10.1023/A:1020270032512
- Satoh, A., M. Watanabe, A. Ueki, and K. Ueki. 2002. Physiological properties and phylogenetic affiliations of anaerobic bacteria isolated from roots of rice plants cultivated on a paddy field. Anaerobe. 8, 233-246 https://doi.org/10.1006/anae.2003.0438
-
Touzel, J.P. and G. Albagnac. 1983. Isolation and characterization of Methanococcus mazei strani MC
$_3$ . FEMS Microbiol. Lett. 16, 241-245 https://doi.org/10.1111/j.1574-6968.1983.tb00295.x - Wang, Z.Y., Y.C. Xu, Z. Li, Y.X. Guo, R. Wassmann, H.U. Neue, R.S. Lantin, L.V. Buendia, Y.P. Ding, and Z.Z. Wang. 2000. A four-year record of methane emissions from irrigated rice fields in the Beijing region of China. Nutr. Cycl. Agroecosyst. 58, 55-63 https://doi.org/10.1023/A:1009878115811
- Ward, D.M. and M.R. Winfrey. 1985. Interactions between methanogenic and sulfate reducing bacteria in sediments, pp. 141-179. In H.W. Jannasch and P.J. Williams (eds.), Advances in Aquatic Microbiology. Academic Press, London, UK
- Wassmann, R. and M.S. Aulakh. 2000. The role of rice plants in regulating mechanisms of methane missions. Biol. Fertil. Soils 31, 20-29 https://doi.org/10.1007/s003740050619
- Weber, S., T. Lueders, M.W. Friedrich, and R. Conrad. 2001. Methanogenic populations involved in the degradation of rice straw in anoxic paddy soil. FEMS Microbiol. Microbiol. Ecol. 38, 11-20 https://doi.org/10.1111/j.1574-6941.2001.tb00877.x
- Wind, T. and R. Conrad. 1997. Localization of sulfate reduction in planted and unplanted rice field soil. Biogeochemistry 37, 253-278 https://doi.org/10.1023/A:1005760506957
- Yao, H., K. Yagi, and I. Nouchi. 2000. Importance of physical plant properties on methane transport through several rice cultivars. Plant Soil 222, 83-93 https://doi.org/10.1023/A:1004773810520