Methane Production and T-RFLP Patterns of Methanogenic Bacteria Dependent on Agricultural Methods

농법에 따른 메탄생성과 메탄생성 세균의 T-RFLP 패턴

  • Published : 2009.03.31

Abstract

We studied soil components, methane production, the number of methanogens, and T-RFLP patterns dependent on agricultural methods with the change of seasons. There is no regular increase or decrease tendency of the most soil components followed by sampling period. And the water content in soil was higher in October than May. Also a lot of methanogens existed in soil, and acetotrophs were relatively of smaller number than hydogenotrophs and formate utilizing methanogens using MPN (most probable number) enumeration. In the experiment using the formate, it was used from the first week, and only a minute amount was detecte after four weeks. However in the acetate, it was increased until the third week, and after that was consumed. And there was higher methane production for all soil samples which administered with the hydrogen spike. The activity of methanogens was higher in the organic and low-agrichemical agricultural method samples, and the organic agricultural method had high methanogen activity among the other samples. A result of T-RFLP pattern of mcrA gene digested with Sau96I, methanogen community have a little relation with agricultural methods and seasons. This results also agreed to no critical difference the soil components dependent on agricultural methods, but some analytical data have a positive relationship with a agricultural methods. Therefor we could concluded that the comparison study of community for soil bacteria sufficiently could be useful for the microbiological indicator.

농법에 따른 토양의 토양 성분과, 메탄생성량, 메탄생성 세균의 수, 그리고 terminal restriction fragment length polymorphism (T-RFLP) 패턴을 계절별로 조사하였다. 조사기간 동안의 대부분 토양 성분은 큰 차이를 나타내지 않았고, 토양내 물 함량은 5월 시료 보다 10월 시료가 높게 나타났다. 그리고 most probable number (MPN) 방법을 이용한 메탄생성 세균 계수에서, 모든 논토양에 메탄생성 세균이 비교적 많이 존재하였으나 수소를 이용하는 메탄생성 세균과 포름산을 이용하는 메탄생성 세균에 비해 아세트산을 이용하는 메탄 세균수가 상대적으로 적은 것을 확인하였다. 또 포름산 이용 실험에서 대부분 토양이 1주부터 빠른 포름산 이용능을 보여, 4주에는 미량만이 검출되었으나, 아세트산을 첨가한 실험에서는 3주까지 아세트산이 증가된 후, 그 이후에야 아세트산이 이용되어 감소됨을 확인하였다. 그리고 수소를 첨가해준 모든 시료에서는 많은 양의 메탄생성이 있음을 확인하였다. 또 Sou96I을 처리한 mcrA 유전자의 T-RFLP 패턴을 분석한 결과, 농법에 따라 토양성분이 크게 차이가 없는 것과 같이 농법과 계절에 의해서도 뚜렷한 차이를 나타내지 않았지만 일부 통계분석 자료는 유의성이 있음을 확인하였다. 따라서 토양 미생물의 군집비교 기법을 미생물학적 지표로 활용할 수 있다고 판단된다.

Keywords

References

  1. Aulakh, M.S., J. Bodenbender, R. Wassmann, and H. Rennenberg. 2000. Methane transport capacity of rice plants. II. Variations among different rice cultivars and relationship with morphological characteristics. Nutr. Cycl. Agroecosyst. 58, 367-375 https://doi.org/10.1023/A:1009839929441
  2. Castro, H.F. 2003. Microbial ecology of anaerobic terminal carbon mineralization in Everglades soils, with emphasis on sulfate reducing prokaryotic assemblages. Ph. D. thesis. University of Florida, Gainesville, Florida, USA
  3. Chauhan, A., A. Ogram, and K.R. Reddy. 2004. Syntrophic-methanogenic associations along a nutrient gradient in the Florida Everglades. Appl. Environ. Microbiol. 70, 3475-3484 https://doi.org/10.1128/AEM.70.6.3475-3484.2004
  4. Chin, K.J., T. Lueders, M.W. Friedrich, M. Klose, and R. Conrad. 2004. Archaeal community structure and pathway of methane formation on rice roots. Microb. Ecol. 47, 59-67 https://doi.org/10.1007/s00248-003-2014-7
  5. Escoffier, S., B. Ollivier, J. LeMer, J. Garcin, and P. Roger. 1998. Evidence and quantification of thiosulfate reducers unable to reduce sulfate in rice field soils. Eur. J. Soil Biol. 34, 69-74 https://doi.org/10.1016/S1164-5563(99)90003-1
  6. Harada, N., M. Nishiyama, and S. Matsumoto. 2001. Inhibition of methanogens increases photo-dependent nitrogenase activities in anoxic paddy soil amended with rice straw. FEMS Microbiol. Ecol. 35, 231-238 https://doi.org/10.1111/j.1574-6941.2001.tb00808.x
  7. Lee, K.B. 1997. Influence of different rice varieties on emission of methane in soil and exudation of carbohydrates in rhizosphere. Korean J. Soil Sci. Fert. 30, 257-264
  8. Lee, K.B. 1999. Methane emission among rice ecotypes in Korean paddy soil. Korean J. Environ. Agricul. 18, 1-5
  9. Li, J., M. Wang, H. Yao, and Y. Wang. 2002. New estimates of methane emissions from Chinese rice paddies. Nutr. Cycl. Agroecosyst. 64, 33-42 https://doi.org/10.1023/A:1021184314338
  10. Liesack, W., S. Schnell, and N.P. Revsbech. 2000. Microbiology of flooded rice paddies. FEMS Microbiol. Rev. 24, 625-645 https://doi.org/10.1111/j.1574-6976.2000.tb00563.x
  11. Lu, W.F., W. Chen, B.W. Duan, W.M. Guo, R.S. Lantin, R. Wassmann, and H.U. Neue. 2000. Methane emissions and mitigation options in irrigated rice fields in southeast China. Nutr. Cycl. Agroecosyst. 58, 65-73 https://doi.org/10.1023/A:1009830232650
  12. Lu, Y., T. Lueders, M.W. Friedrich, and R. Conrad. 2005. Detecting active methanogenic populations on rice roots using stable isotope probing. Environ. Microbiol. 7, 326-336 https://doi.org/10.1111/j.1462-2920.2005.00697.x
  13. Lueders, T. and M.W. Friedrich. 2002. Effects of amendment with ferrihydrite and gypsum on the structure and activity of methanogenic populations in rice field soil. Appl. Environ. Microbiol. 68, 2484-2494 https://doi.org/10.1128/AEM.68.5.2484-2494.2002
  14. Luton, P.E., J.M. Wayne, R.J. Sharp, and P.W. Riley. 2002. The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiology 148, 3521-3530 https://doi.org/10.1099/00221287-148-11-3521
  15. Min, H., Y.H. Zhao, M.C. Chen, and Y. Zhao. 1997. Methanogens in paddy rice soil. Nutr. Cycl. Agroecosyst. 49, 163-169 https://doi.org/10.1023/A:1009786803433
  16. Mitra, A.P., P.K. Gupta, and C. Sharma. 2002. Refinement in methodologies for Methane budget estimation from Rice paddies. Nutrient Cycling Agroecosystems 64, 147-155 https://doi.org/10.1023/A:1021180213429
  17. Mphande, A.C., R.K. Malik, and P. Tauro. 1995. Methane emission and methanogen status of Indian rice soil. Biores. Technol. 55, 155-158 https://doi.org/10.1016/0960-8524(95)00120-4
  18. Nakagawa, F., N. Yoshida, A. Sugimoto, E. Wada, T. Yoshioka, S. Ueda, and P. Vijarnsorn. 2002. Stable isotope and radiocarbon compositions of methane emitted from tropical rice paddies and swamps in Southern Thailand. Biogeochemistry 61, 1-19 https://doi.org/10.1023/A:1020270032512
  19. Satoh, A., M. Watanabe, A. Ueki, and K. Ueki. 2002. Physiological properties and phylogenetic affiliations of anaerobic bacteria isolated from roots of rice plants cultivated on a paddy field. Anaerobe. 8, 233-246 https://doi.org/10.1006/anae.2003.0438
  20. Touzel, J.P. and G. Albagnac. 1983. Isolation and characterization of Methanococcus mazei strani MC$_3$. FEMS Microbiol. Lett. 16, 241-245 https://doi.org/10.1111/j.1574-6968.1983.tb00295.x
  21. Wang, Z.Y., Y.C. Xu, Z. Li, Y.X. Guo, R. Wassmann, H.U. Neue, R.S. Lantin, L.V. Buendia, Y.P. Ding, and Z.Z. Wang. 2000. A four-year record of methane emissions from irrigated rice fields in the Beijing region of China. Nutr. Cycl. Agroecosyst. 58, 55-63 https://doi.org/10.1023/A:1009878115811
  22. Ward, D.M. and M.R. Winfrey. 1985. Interactions between methanogenic and sulfate reducing bacteria in sediments, pp. 141-179. In H.W. Jannasch and P.J. Williams (eds.), Advances in Aquatic Microbiology. Academic Press, London, UK
  23. Wassmann, R. and M.S. Aulakh. 2000. The role of rice plants in regulating mechanisms of methane missions. Biol. Fertil. Soils 31, 20-29 https://doi.org/10.1007/s003740050619
  24. Weber, S., T. Lueders, M.W. Friedrich, and R. Conrad. 2001. Methanogenic populations involved in the degradation of rice straw in anoxic paddy soil. FEMS Microbiol. Microbiol. Ecol. 38, 11-20 https://doi.org/10.1111/j.1574-6941.2001.tb00877.x
  25. Wind, T. and R. Conrad. 1997. Localization of sulfate reduction in planted and unplanted rice field soil. Biogeochemistry 37, 253-278 https://doi.org/10.1023/A:1005760506957
  26. Yao, H., K. Yagi, and I. Nouchi. 2000. Importance of physical plant properties on methane transport through several rice cultivars. Plant Soil 222, 83-93 https://doi.org/10.1023/A:1004773810520