Hydrolytic and Metabolic Capacities of Thermophilic Geobacillus Isolated from Litter Deposit of a Lakeshore

수변 낙엽퇴적층에서 분리한 호열성 Geobacillus의 물질 분해 특성

  • Baek, Hyun-Ju (Department of Environmental Science, Kangwon National University) ;
  • Zo, Young-Gun (Department of Environmental Science, Kangwon National University) ;
  • Ahn, Tae-Seok (Department of Environmental Science, Kangwon National University)
  • Published : 2009.03.31

Abstract

To understand contribution of thermophilic microorganisms in decomposition of litter deposits on shore of lakes, we surveyed a lakeshore litter deposit for bacteria growing at $60^{\circ}C$. Ten thermophilic isolates were selected for in-depth characterization, based on their high capacity to degrade high molecular weight organic compounds. Based on phylogenetic analysis on their 16S rRNA gene sequences, all isolates were identified as Geobacillus. The optimal growth temperature and pH of the strains ranged $55{\sim}60^{\circ}C$ and 6.0${\sim}$8.0, respectively. Salinity was inhibitory to the growth of the isolates, showing marked decrease of growth rates at 3% salinity. Based on activities of hydrolytic enzymes and profiles of carbohydrate utilization (determined by API 50 CHB kit), three G. stearothermophilus strains showed patterns clearly distinctive from other isolates. Two G. kaustophilus strains also demonstrated distinctiveness in their metabolic pattern and ecological parameters. However, ecological and metabolic profiles of the other five isolates were more variable and showed some degree of digression from their phylogenetic classification. Therefore, it could be concluded that endospore-forming thermophilic bacteria in lakeshore litter deposits contribute to degradation of organic materials with diverse ecological niches while having successions similar to microbial flora in compost. We propose that the thermophilic isolates and/or their thermo-tolerant enzymes can be applied to industrial processes as appropriate mixtures.

수변 낙엽퇴적층에서 호열성 세균의 분포와 물질분해 양상을 파악하기 위하여, 호열성 세균을 분리하고 그 특성을 조사하였다. 고분자 유기물의 분해력이 높고 $60^{\circ}C$에서 생장하는 균주들을 탐색한 결과, 10개의 균주가 선별되었다. 16S rRNA 유전자 염기서열을 결정하고 계통분석한 결과, 모두 Geobacillus 속으로 동정되었다. 균주들의 최적 성장온도는 $55^{\circ}C$$60^{\circ}C$, 최적 pH는 초기 pH가 6.0${\sim}$8.0일 때로 나타났으며, 염분 3%일 때를 기준으로 성장속도의 저해가 뚜렷하게 나타났다. 균주의 효소 활성도와 API 50 CHB kit에 의한 탄수화물 이용도를 바탕으로 균주의 생태학적 기능을 알아본 결과, G. stearothermophilus 균주들과 G. kaustophilus 균주들의 특성은 다른 종의 균주들과 명확히 구분되었으며, 나머지 균주들은 최적 성장환경의 생태학적 특징이 다양하게 나타나, 종별 구분과 정확히 일치하지는 않았다. 약산성 환경에서 최적 성장하는 G. stearothermophilus 균주들은 높은 단백질분해효소활성을 보이면서 다당류 분해와 단당류 이용도가 낮았고, 알칼리환경을 최적 서식지로 하는 G. kaustophilus 등은 이와 대조적으로 지질 분해 및 당류의 이용도가 높게 나타났다. 따라서, 수변 낙엽퇴적층에는 호열성 내성포자 형성 세균인 Geobacillus 속 균주들이 다양한 생태학적 지위를 가지며 퇴비화와 유사한 천이과정을 거치면서 수변 퇴적물질을 분해하는데 기여하는 것으로 보여진다.

Keywords

References

  1. 이정현. 2006. 해양유래 초고온성 고세균 Thermococcus sp. NA1 유전체 해독과 활용. 유전체 소식 6, 29-34
  2. 이희선, 심재국. 1994. 삼림토양의 미생물군집과 아밀라아제 활성에 관한 연구. 한국생태학회지 17, 171-183
  3. Adams, M.W.W., F.B. Perler, and R.M. Kelly. 1995. Extremozymes: expanding the limits of biocatalysis. Nat. Biotechnol. 13, 662-668 https://doi.org/10.1038/nbt0795-662
  4. Amend, J.P. and E.L. Shock. 2001. Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and Bacteria. FEMS Microbiol. Rev. 25, 175-243 https://doi.org/10.1111/j.1574-6976.2001.tb00576.x
  5. Claus, D. and R.C.W. Berkeley. 1986. Genus Bacillus Cohn 1872, pp. 1105-1139. In P.H.A. Sneath, N.S. Mair, M.E. Sharpe, and J.G. Holt (eds.), Bergey's manual of systematic bacteriology, vol. 2. The Williams & Wilkins Co., Baltimore, Maryland, USA
  6. Cole, J.R., Q. Wang, E. Cardenas, J. Fish, B. Chai, R.J. Farris, A.S. Kulam-Syed-Mohideen, D.M. McGarrell, T. Marsh, G.M. Garrity, and J.M. Tiedje. 2009. The Ribosomal Database Project: Improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 37, 141-145 https://doi.org/10.1093/nar/gkn879
  7. Fortina, M.G., D. Mora, P. Schumann, C. Parini, P.L. Manachini, and E. Stackebrandt. 2001. Reclassification of Saccharococcus caldoxylosilyticus as Geobacillus caldoxylosilyticus (Ahmad et al. 2000) comb. nov. Int. J. Syst. Evol. Microbiol. 51, 2063-2071 https://doi.org/10.1099/00207713-51-6-2063
  8. Garrity, G.M., T.G. Lilburn, J.R. Cole, S.H. Harrison, J. Euzeby, and B.J. Tindall. 2007. Taxonomic Outline of the Bacteria and Archaea. In TOBA Release 7.7. Michigan State University Board of Trustees, East Lansing, MI, USA
  9. Guindon, S. and O. Gascuel. 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52, 696-704 https://doi.org/10.1080/10635150390235520
  10. Haki, G.D. and S.K. Rakshit. 2003. Developments in industrially important thermostable enzymes: a review. Biores. Technol. 89, 17-34 https://doi.org/10.1016/S0960-8524(03)00033-6
  11. Hedderich, R., S.P.J. Albracht, D. Linder, J. Koch, and R.K. Thauer. 1992. Isolation and characterization of polyferredoxin from Methanobacterium thermoautotrophicum The mvhb gene product of the methylviologen-reducing hydrogenase operon. FEBS Lett. 298, 65-68 https://doi.org/10.1016/0014-5793(92)80023-A
  12. Holt, J.G., N.R. Krieg, P.H.A. Sneath, J.T. Staley, and S.T. Williams. 1994. Group 18: Endospore-forming Gram-positive rods and cocci, pp. 559-564. In J.G. Holt, K.H. Schleifer, J.G. Tully, J Ursing, M. Bryant, N.R. Krieg, J. Liston, J.W. Moulder, R.G.E. Murray, C.F. Niven, and N. Pfenning (eds.), Bergey's manual of systematic bacteriology, 9th ed. The Williams & Wilkins Co., Baltimore, Maryland, USA
  13. Kwak, Y.S., T. Kobayashi, T. Akiba, K. Hirikioshi, and Y.B. Kim. 1994. Isolation and characterization of an extremely thermophilic sulfur-metabolizing bacterium from a deep-sea hydrothermal vent system. J. Microbiol. Biotechnol. 4, 36-40
  14. Ladenstein, R. and G. Antranikian. 1998. Proteins from hyperthermophiles: stability and enzymatic catalysis close to the boiling point of water. Adv. Biochem. Eng. Biotechnol. 61, 37-85 https://doi.org/10.1007/BFb0102289
  15. Madigan, M.T. and J.M. Martino. 2006. Brock Biology of Microorganisms, 11th ed, p. 136. Upper saddle river: Pearson/Prentice Hall, NJ, USA
  16. Manachini, P.L., D. Mora, G. Nicastro, C. Parini, E. Stackebrandt, R. Pukall, and M.G. Fortina. 2000. Bacillus thermodenitrificans sp. nov., nom. rev. Int. J. Syst. Evol. Microbiol. 50, 1331-1337 https://doi.org/10.1099/00207713-50-3-1331
  17. Nazina, T.N., T.P. Tourova, A.B. Poltaraus, E.V. Novikova, A.A. Grigoryan, A.E. Ivanova, A.M. Lysenko, V.V. Petrunyaka, G.A.Osipov, S.S. Belyaev, and M.V. Ivanov. 2001. Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermoglucosidasius and Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus, G. thermoglucosidasius and G. thermodenitrificans. Int. J. Syst. Evol. Microbiol. 51, 433-446Ā䈀傼Ɨ⨀Ā处돀邳Ɨ⨀砫Ɨ⨀㄄돐壧Ɨ⨀Ɨ⨀聰칀⁋䥓呉ㄮ㄰〳⽊乌⹊䅋伲〰㜳㐵ㄶ㌲ 赋䥓呉ㄮ㄰〳⽊乌⹊䅋伲〰㐰㠸㈳ 襗ྚ﷑ဿ锤ꪩꐥ䁇耪榩녰汇@ɍ呁聰칀ₙ鹿ȀȀ ؀Ā聰칀襗ྚ﷑ဿ聰칀锤ꪩꐥ䁇죪Ɨ⨀ Ā耪榩녰汇Ɨ⨀ Ȁ锤ꪩꐥ䁇࣫Ɨ⨀ 耪榩녰汇⣫Ɨ⨀ ꀰ슖⨀䣪Ɨ⨀ȀĀ넂돐飞Ɨ⨀僚Ɨ⨀蠰ʗ⨀칁ⵁ❄潥猠瑨攠䥮瑥牮整⁉湣牥慳攬⁄散 볬蒱뷬ꂜ냪떬谀ᔀ꫃䂨΀넾⾐릲㞢䍇侖邝垐浇€ͷ䵁칁ⵁ鿟㝁ȀऀἀЀĀ칁ⵁ꫃䂨΀넾칁ⵁ⾐릲㞢䍇ᣢƗ⨀ Ā侖邝垐浇㣢Ɨ⨀ᔀȀ⾐릲㞢䍇壢Ɨ⨀ 侖邝垐浇磢Ɨ⨀ᔀ슖⨀飡Ɨ⨀Ȁ⾐릲㞢䍇?Ɨ⨀ Ā侖邝垐浇Ɨ⨀ᔀȀ❄潥猠瑨攠䥮瑥牮整⁉湣牥慳攬⁄散볬蒱뷬ꂜ냪떬谀❄潥猠瑨攠䥮瑥牮整⁉湣牥慳攬⁄散볬蒱뷬ꂜ냪떬谀❄潥猠瑨攠䥮瑥牮整⁉湣牥慳攬⁄散볬蒱뷬ꂜ냪떬谀㄀돐ᣠƗ⨀士Ɨ⨀处돀邳Ɨ⨀砫㣧Ɨ⨀돀偠—⨀僚Ɨ⨀ https://doi.org/10.1099/00207713-51-2-433
  18. Rhee, S.K., C. Jeon, J.W. Bae, K. Kim, J. Song, J.J. Kim, S.G. Lee, H.I. Kim, S.P. Hong, Y.H. Choi, S.M. Kim, and M.H. Sung. 2002. Characterization of Symbiobacterium toebii, an obligate commensal thermophile isolated from compost. Extremophiles 6, 57-64 https://doi.org/10.1007/s007920100233
  19. Russell, R.J.M. and G.L. Taylor. 1995. Engineering thermostability: lessons from thermophilic proteins. Curr. Opin. Biotechnol. 6, 370-374 https://doi.org/10.1016/0958-1669(95)80064-6
  20. Ryckeboer, J., J. Mergaert, K. Vaes, S. Klammer, D.D. Clercq, J. Coosemans, H. Insam, and J. Swings. 2003. A survey of bacteria and fungi occurring during composting and self-heating processes. Ann. Microbiol. 53, 349-410
  21. Schaffer, C., W.L. Franck, A. Scheberl, P. Kosma, T.R. McDermott, and P. Messner. 2004. Classification of isolates from locations in Austria and Yellowstone National Park as Geobacillus tepidamans sp. nov. Int. J. Syst. Evol. Microbiol. 54, 2361-2368 https://doi.org/10.1099/ijs.0.63227-0
  22. Stetter, K., A. Segerer, W. Zillig, G. Huber, G. Fiala, R. Huber, and H. K$\ddot{o}$nig. 1986. Extremely thermophilic sulfur-metabolizing archaebacteria. Syst. Appl. Microbiol. 7, 393-397 https://doi.org/10.1016/S0723-2020(86)80040-6
  23. Swofford, D.L. 1998. PAUP$^*$. Phylogenetic Analysis Using Parsimony ($^*$and Other Methods). 4.0 ed. Sinauer Associates, Sunderland, MA, USA
  24. Takai, K. and K. Horikoshi. 2000. Thermosipho japonicus sp. nov., an extremely thermophilic bacterium isolated from a deepsea hydrothermal vent in Japan. Extremophiles 4, 9-17 https://doi.org/10.1007/s007920050002
  25. Wang, L., Y. Tang, S. Wang, R.L. Liu, M.Z. Liu, Y. Zhang, F.L. Liang, and L. Feng. 2006. Isolation and characterization of a novel thermophilic Bacillus strain degrading long-chain n-alkanes. Extremophiles 10, 347-356 https://doi.org/10.1007/s00792-006-0505-4
  26. Wang, Q., G.M. Garrity, J.M. Tiedje, and J.R. Cole. 2007. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261-5267 https://doi.org/10.1128/AEM.00062-07