Combined Effects of Bacteriocin of Enterococcus faecalis MJ-213 and Organic Acid on Listeria monocytogenes Inactivation

Listeria monocytogenes에 대한 Enterococcus faecalis MJ-213이 생산한 박테리오신과 유기산 혼합 처리의 항균활성

  • Lim, Sung-Mee (Department of Food Science and Technology, Tongmyong University)
  • 임성미 (동명대학교 식품공학과)
  • Published : 2009.03.31

Abstract

In this study, the effect of combining oragnic acid and bacteriocin of E. faecalis MJ-213 isolated from Meju against L. monocytogenes KCTC 3569 growth in BHI broth and ground pork was investigated. In combination, the effects of 256 BU/ml bacteriocin and 1.5% acetic acid, citric acid or lactic acid were synergistic and effective than those compounds alone in controlling the viable cell counts of L. moncytogenes. The addition of increasing concentrations of the bacteriocin or organic acids led to a marked decrease in the number of L. monocytogenes. The combining treatment of the bacteriocin (256 BU/ml) and organic acid (1.5%) in ground pork inoculated with L. monocytogenes (5 log CFU/ml) resulted in 1 to 2 log CFU/ml reduction of cell counts during storage at $4^{\circ}C$ for 60 h. Also, the bacteriocin of E. faecalis MJ-213 was relatively stable at $100^{\circ}C$ for 20 min.

메주에서 분리된 Enterococcus faecalis MJ-213이 생산한 박테리오신 용액과 유기산의 혼합 처리에 의한 Listeria monocytogenes KCTC 3569의 항균효과를 조사하였다. 박테리오신 256 BU/ml 단독 처리에 의한 L. monocytogenes KCTC 3569의 감소율은 약 32% 정도였으나, 박테리오신과 acetic acid 2.0%의 혼합 처리에 의해 약 80% 감소되었고, 혼합한 유기산 중에서 citric acid와 lactic acid 보다 acetic acid에 의해 더 높게 나타났다. 한편, acetic acid 1.5%와 박테리오신 128 BU/ml에 의해선 약 30% 정도 감소된 반면, 512 BU/ml와의 혼합 처리에 의해선 약 78% 정도 감소되었다. 또한 유기산과 박테리오신의 혼합처리시 L. monocytogenes KCTC 3569의 초기 균수가 3 log CFU/ml인 경우 7 log CFU/ml일 때보다 감소율은 무려 2배 이상 증가되어 초기 균수가 적을수록 항균효과는 더 크게 나타났다. L. monocytogenes KCTC 3569의 증식과정 중 유도기에 acetic acid와 박테리오신을 혼합 처리한 경우 박테리오신 단독처리 때 보다 흡광도는 약 절반 정도에만 머물렀다. 시판 돈육 내에 존재하는 L. monocytogenes KCTC 3569의 균수는 박테리오신 256 BU/ml 단독 처리한 경우 $4^{\circ}C$에서 60시간 동안 약 1 log CFU/ml 감소되었으나, acetic acid와 혼합 처리에 의해선 약 2 log CFU/ml 감소되었다. 한편 가열 처리 전후 박테리오신 용액의 항균 활성에는 거의 변화가 없었다.

Keywords

References

  1. 공영준, 박부길, 오덕환. 2001. 식중독균에 대한 신갈나무잎 추출물과 유기산의 항균효과. 한국식품과학회지 33, 178-183
  2. 안용선, 신동화. 1999. 식중독 미생물에 대한 유기산 및 에탄올의 항균활성 비교연구. 한국식품과학회지 31, 1315-1323
  3. 이나경, 이주연, 곽형근, 백현동. 2008. 축산업 분야에서의 박테리오신의 산업적 이용 및 향후 전망. 한국축산식품학회지 28, 1-8 https://doi.org/10.5851/kosfa.2008.28.1.1
  4. Akbas, M.Y. and H. Olmez. 2007. Inactivation of Escherichia coli and Listeria monocytogenes on iceberg lettuce by dip wash treatments with organic acids. Lett. Appl. Microbiol. 44, 619-624 https://doi.org/10.1111/j.1472-765X.2007.02127.x
  5. Al-Holy, M., H. Al-Qadiri, M. Lin, and B. Rasco. 2006. Inhibition of Listeria innocua in hummus by a combination of nisin and citric acid. J. Food Prot. 69, 1322-1327 https://doi.org/10.4315/0362-028X-69.6.1322
  6. Bari, M.L., D.O. Ukuku, T. Kawasaki, Y. Inatsu, K. Isshiki, and S. Kawamoto. 2005. Combined efficacy of nisin and pediocin with sodium lactate, citric acid, phytic acid, and potassium sorbate and EDTA in reducing the Listeria monocytogenes population of inoculated fresh-cut produce. J. Food Prot. 68, 1381-1387 https://doi.org/10.4315/0362-028X-68.7.1381
  7. Bruno, M.E.C. and T.J. Montville. 1993. Common mechanistic action of bacteriocins from lactic acid bacteria. Appl. Environ. Microbiol. 59, 3003-3010
  8. Charkraborty, T. and W. Goebel. 1988. Recent developments in the study of virulence in Listeria monocytogenes. Curr. Top. Microbiol. Immunol. 138, 41-48
  9. Degnan, A.J., N. Buyong, and J.B. Luchansky. 1993. Antilisterial activity of pediocin AcH in model food systems in the presence of an emulsifier or encapsulated within liposomes. Int. J. Food Microbiol. 18, 127-138 https://doi.org/10.1016/0168-1605(93)90217-5
  10. Dieterich, G., U. Karst, E. Fischer, J. Wehland, and L. Jansch. 2006. LEGER: knowledge database and visualization tool for comparative genomics of pathogenic and non-pathogenic Listeria species. Nucleic Acids Res. 34, D402-D406 https://doi.org/10.1093/nar/gkj071
  11. Eswaranandam, S., N.S. Hettiarachchy, and M.G. Johnson. 2004. Antimicrobial activity of citric, lactic, malic, or tartaric acids and nisin-incorporated soy protein film against Listeria monocytogenes, Escherichia coli O157:H7 and Salmonella gaminara. J. Food Sci. 69, 79-84 https://doi.org/10.1111/j.1365-2621.2004.tb13375.x
  12. Farber, J.M. and P.I. Peterkin. 1991. Listeria monocytogenes, a food-borne pathogen. Microbiol. Rev. 55, 476-511
  13. Freese, E., C.W. Sheu, and E. Galliers. 1973. Function of lipophilic acids as antimicrobial food additives. Nature 241, 321-325 https://doi.org/10.1038/241321a0
  14. Gellin, B.G. and C.V. Broome. 1989. Listeriosis. JAMA. 261, 1313-1320 https://doi.org/10.1001/jama.261.9.1313
  15. Gravesen, A., Z. Diao, J. Voss, B.B. Budde, and S. Knochel. 2004. Differential inactivation of Listeria monocytogenes by D-and Llactic acid. Lett. Appl. Microbiol. 39, 528-532 https://doi.org/10.1111/j.1472-765X.2004.01628.x
  16. Heo, S., S.K. Lee, C.H. Lee, S.G. Min, J.S. Park, and H.Y. Kim. 2007. Morphological changes induced in Listeria monocytogenes V7 by a bacteriocin produced by Pediococcus acidilactici. J. Microbiol. Biotechnol. 17, 663-667
  17. Holo, H., O. Nilssen, and I.F. Nes. 1991. Lactococcin A, a new bacteriocin from Lactococcus lactis subsp. cremoris: isolation and characterization of the protein and its gene. J. Bacteriol. 173, 3879-3887 https://doi.org/10.1128/jb.173.12.3879-3887.1991
  18. Iseppi, R., F. Pilati, M. Marini, M. Toselli, De S. Niederhausern, F. Guerrieri, P. Messi, C. Sabia, G. Manicardi, I. Anacarso, and M. Bondi. 2008. Anti-listerial activity of a polymeric film coated with hybrid coatings doped with Enterocin 416K1 for use as bioactive food packaging. Int. J. Food Microbiol. 30, 281-287 https://doi.org/10.1016/j.ijfoodmicro.2007.12.015
  19. Kim, S.Y., Y.M. Lee, S.Y. Lee, Y.S. Lee, J.H. Kim, C. Ahn, B.C. Kang, and G.E. Ji. 2001. Synergistic effect of citric acid and pediocin K1, a bacteriocin produced by Pediococcus sp. K1, on inhibition of Listeria monocytogenes. J. Microbiol. Biotechnol. 11, 831-837
  20. Lu, Z., J.G. Sebranek, J.S. Dickson, A.F. Mendonca, and T.B. Bailey. Application of predictive models to estimate Listeria monocytogenes growth on frankfurters treated with organic acid salts. J. Food Prot. 68, 2326-2332 https://doi.org/10.4315/0362-028X-68.11.2326
  21. Nikaido, H. 2003. Molecular basis of bacterial outer membrane permeability revisited. Microbiol. Mol. Biol. Rev. 67, 593-656 https://doi.org/10.1128/MMBR.67.4.593-656.2003
  22. Nykanen, A., S. Vesanen, and H. Kallio. 1998. Synergistic antimicrobial effect of nisin whey permeated and lactic acid on microbes isolated from fish. Lett. Appl. Microbiol. 27, 345-348 https://doi.org/10.1046/j.1472-765X.1998.00450.x
  23. Nykanen, A., K. Weckman, and A. Lapvetelainen. 2000. Synergistic inhibition of Listeria monocytogenes on cold-smoked rainbow trout by nisin and sodium lactate. Int. J. Food Microbiol. 61, 63-72 https://doi.org/10.1016/S0168-1605(00)00368-8
  24. Olasupo, N.A., D.J. Fitzgerald, A. Narbad, and M.J. Gasson. 2004. Inhibition of Bacillus subtilis and Listeria innocua by nisin in combination with some naturally occurring organic compounds. J. Food Prot. 67, 596-600 https://doi.org/10.4315/0362-028X-67.3.596
  25. Piard, J.C., F. Delorme, G. Giraffa, J. Commissaire, and M. Desmazeaud. 1990. Evidence for a bacteriocin produced by Lactococcus lactis CNRZ481. Neth. Milk Dairy J. 44, 143-158
  26. Piard, J.C., F. Delorme, G. Giraffa, J. Commissaire, and M. Desmazeaud. 1990. Evidence for a bacteriocin produced by Lactococcus lactis CNRZ481. Neth. Milk Dairy J. 44, 143-158
  27. Raybaudi-Massilia, R.M., J. Mosqueda-Melgar, and O. Martin- Belloso. 2009. Antimicrobial activity of malic acid against Listeria monocytogenes, Salmonella Enteritidis and Escherichia coli O157:H7 in apple, pear and melon juices. Food Control 20, 105-112 https://doi.org/10.1016/j.foodcont.2008.02.009
  28. Scannell, A.G., R.P. Ross, C. Hill, and E.K. Arendt. 2000. An effective lacticin biopreservative in fresh pork sausage. J. Food Prot. 63, 370-375 https://doi.org/10.4315/0362-028X-63.3.370
  29. Trias, R., E. Badosa, E. Montesinos, and L. Baneras. 2008. Bioprotective Leuconostoc strains against Listeria monocytogenes in fresh fruits and vegetables. Int. J. Food Microbiol. 127, 91-98 https://doi.org/10.1016/j.ijfoodmicro.2008.06.011
  30. Van Boeijen, I.K., R. Moezelaar, T. Abee, and M.H. Zwietering. 2008. Inactivation kinetics of three Listeria monocytogenes strains under high hydrostatic pressure. J. Food Prot. 71, 2007-2013 https://doi.org/10.4315/0362-028X-71.10.2007
  31. Zhou, W., G.R. Liu, P.L. Li, Y.Q. Dai, and K. Zhou. 2007. Mode of action of plantaricin L-1, and antilisteria bacteriocin produced by Lactobacillus plantarum. Wei. Sheng Wu. Xue Bao. 47, 260-264
  32. Zhu, M.J., A. Mendonca, H.A. Ismail, and D.U. Ahn. 2008. Effects of irradiation on survival and growth of Listeria monocytogenes and natural microflora in vacuum-packaged turkey hams and breast rolls. Poult Sci. 87, 2140-2145 https://doi.org/10.3382/ps.2007-00385
  33. Zuliani, V., I. Lebert, J.C. Augustin, P. Garry, J.L. Vendeuvre, and A. Lebert. 2007. Modelling the behaviour of Listeria monocytogenes in ground pork as a function of pH, water activity, nature and concentration of organic acid salts. J. Appl. Microbiol. 103, 536-550 https://doi.org/10.1111/j.1365-2672.2007.03283.x