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The finite element based lattice Boltzmann method (FELBM) has been developed to model complex fluid domain
shapes, which is essential for studying fluid-structure interaction problems in commercial nuclear power systems, for
example. The present study addresses a new finite element formulation of the lattice Boltzmann equation using a general
weighted residual technique. Among the weighted residual formulations, the collocation method, Galerkin method, and
method of moments are used for finite element based Lattice Boltzmann solutions. Different finite element geometries, such
as triangular, quadrilateral, and general six-sided solids, were used in this work. Some examples using the FELBM are
studied. The results were compared with both analytical and computational fluid dynamics solutions.
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1. INTRODUCTION

The Lattice Boltzmann Method (LBM) has been
developed for applications involving thermal-fluid problems.
It is particularly attractive because of its simplicity and
substantial potential for use in massively parallel computing
environments compared to other currently available
numerical methods. In addition, incorporation of irregular
boundary conditions, mesoscopic forces that drive phase
transitions, and other related complexities which are hard
to be described in continuum approaches are relatively
simple in the LBM formalism [1]. Recently, the technique
was also applied to model fluid-structure interaction
problems [2]. Most of those studies considered regular
lattices, such as square and cubic grids. In order to apply
the LBM to more practical cases, however, one must
consider complex and irregularly shaped problem domains.
Different approaches have addressed this concern. The
most common technique uses the finite volume formulation
of the LBM [3,4]. Other approaches use point-wise
interpolation for irregular grids [5] and finite element
methods [6,7].

In generally, the finite element method is very powerful
for solving fluid flow in two- and three-dimensional
complex and irregular domain shapes. Here, an isoparametric
element formulation is often used. It is based on a
mathematical mapping of regular element shapes in the
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imaginary domain to more general and irregular element
shapes in the physical domain [8]. Other choices of finite
elements are also possible: triangular and quadrilateral
shapes in 2-D, and tetrahedral, triangular prism, and
general six-sided solids in 3-D. This flexibility has prompted
us to implement a new finite element based formulation
of the lattice Boltzmann equation using the general
weighted residual technique. Among the weighted residual
formulations, the collocation method, Galerkin method,
and method of moments are used to develop the finite
element based LBM.

The numerical stability, accuracy, and efficiency of
the developed FELBM are in general, not very sensitive
to the choice of weighted residual method (collocation,
Galerkin, and moment). Thus, in this study, for the sake of
simplicity and ease, the Galerkin method implementation
is selected. We develop our simulation code based on
this implementation for present and future work. The
continuous Galerkin method used in this paper is different
from the discontinuous Galerkin method. Each technique
has its merits. The former is simpler in formulation than
the latter. This work differs from previous work in that a
general weighted residual formulation is used for LBM
solutions. This allows various FELBM to be developed,
such as Galerkin’s method, the collocation method, and
the method of moments, etc. Each of these techniques has
its own strengths in terms of the finite element formulation.
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We are able, in our formulation, to take advantage of those
characteristics.

2. FINITE ELEMENT BASED LATTICE BOLTZMANN
METHOD

The lattice Boltzmann equation reads

o, -
2 Vf, =Q,, 1
at +ea -fa a ( )

where f. is the particle velocity distribution function along
the - direction, ¢ is time, €. is the discrete velocity vector
along the ¢- direction, and Q. is the collision operator.
The discrete velocity vector is given below in (2) and
shown in Fig. 1 for the D2Q9-a two-dimensional square
lattice model with nine discrete velocity vectors.
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where c is the lattice speed.

When a single relaxation time technique is used for the
collision operator, c.f. Bhatnagar-Gross-Krook (BGK)
[9], the collision operator can be written as
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Fig. 1. D2Q9 Lattice Showing Nine Discrete Velocity Vectors
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equilibrium distribution of f.. The latter can be derived
from the Maxwell-Boltzmann distribution. Using its
quadratic expansion, the local equilibrium distribution
for the D2Q9 model is

. 3.8, 9(v-8,) 39
=po,| 1+ —%+ T
Ja =P, ¢ 2c¢* 2¢

. @

where, o is the fluid density and v is the fluid velocity.
The fluid density o and momentum density oV are defined
by sums over the particle velocity distribution function /2,
and they are expressed as

p=21 ©)

o

and
p7=3 13, ©

In addition, w. is the weighting parameter for each velocity
direction as given below for D2Q9:

4/9 a=0
1/9 a=123,41| (N
1/36 a=5,6,7,8
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Substitution of (3) into (1) results in

Qfa_+ga.vfa+l(fa—fa)=o. ®)

ot z

In order to derive the FELBM from (8), the problem domain
is discretized into a number of finite elements. Then, the
variable f. is expressed in terms of the interpolation
functions and nodal variables as given below:

L= Hfi=[H}f,} ©

in which A’ is the spatial interpolation function for the
nodal variable /% at the i-th node of the finite element, and
n is the number of nodes per element. In addition, [H] is
a row vector consisting of the interpolation functions, and
{fz} 1s a column vector containing unknown solutions at
the nodes. Inserting (9) into (8) yields
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for each finite element. The superimposed dot denotes the
temporal derivative.

Applying the weighted residual formulation to (10)
gives the following expression
i ls-o.

an
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where the integration is over each finite element domain
S, and the summation is performed over the total number
of elements. Furthermore, {w} is a column vector of the
weighting functions. The size of {w} is equal to the number
of nodes per element. Rewriting (11) yields

MYE, b [KYE, b+ [CHE - C)F, J=0,  (12)

where

=3 [ {(wi{H s (13)

=X [ bole, -[vH]as (14)
=3 [ bl (15)
Fd= 20 (16)

=17 (17)

Depending on the choice of weighting function, the
subsequent technique reduces to the Galerkin method,
collocation method, method of moments, least-square
method, or sub-domain method. In this study, the first
three techniques will be investigated and implemented.

For the Galerkin method, the weighting function is
selected to be the interpolation functions as used in (11),
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i.e. {wi=[H]". In this case, (13) through (15) can be
expressed as

[ m Z.[ H]a'S (18)

=X [[H#] G, [vadas  a9)
= [ Lo ks (20)

For the collocation method, the weighting functions
are selected to be Dirac delta functions. In the present
formulation, Dirac delta functions are defined at the nodal
points of each element. Therefore, for the 2-D case,
w(x,)=8(x-x;)8(¥-y;), where x; and y; are the nodal
coordinate values. On the other hand, for the method of
moment the weighting functions are chosen to be monomial
terms such as x*)? (where p, ¢ are non-negative integers)
starting from the lowest order.

Once the matrix equation of the first order time
derivative, as given by (12), is developed from the weighted
residual finite element formulation, the expression is
integrated over time numerically. Many different numerical
time integration techniques exist. They include, but are not
limited to, forward differencing, backward differencing,
Crank-Nicolson, Runge-Kutta, and predictor-corrector.
We chose the forward difference technique because of its
computational efficiency. When we diagonalize the matrix
[M], the forward difference technique becomes an explicit
method. As a result, because of conditional stability, the
overall computation is efficient even for small time
integration step sizes At. If an unconditionally stable
method is preferred, the Crank-Nicolson technique can
be used.

The forward differencing formulation of (12) is

{E Y ={F,} +adMm ([c

o
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and it is solved given some initial and boundary conditions.

3. NUMRICAL RESULTS

We performed numerical calculations for four different
examples to demonstrate the performance of our FELBM
technique. We first examined two-dimensional steady-
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Fig. 2. Comparison of Different FELBMs (Galerkin Method,

Collocation Method, and Method of Moments) for Plane
Poiseuille Flow Using 2-D, Four-node Quadrilateral Elements
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Fig. 3. Comparison of the 2-D Four-node Quadrilateral, 2-D
Three-node Triangular, and 3-D Eight-node Brick-shape
Elements for the Plane Poiseuille Flow Using the Galerkin
Method

state Poiseuille flow between two parallel walls, where
pressure was prescribed for both the duct inlet and outlet.
The inlet pressure was greater than the outlet pressure,
and flow occurs due to this pressure gradient since a
higher pressure means greater particle velocity distribution.
This problem was solved using a variety of techniques.
First, the FELBM technique separately using the Galerkin,
collocation, and moments methods, was applied using
four-node quadrilateral elements. The finite element meshes
used for the analysis ranged from 15 X 15 to 25 x 25.
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Fig. 4. Comparison of the Steady State Velocity Flow Profile
between Two Co-axial Cylinders. Four-node Quadrilateral
Elements were Used
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Fig. 5. Converging Duct Mesh

Their velocity profiles (Fig. 2) are in good agreement
with the analytical solution. In this as well as subsequent
figures, unless otherwise mentioned, all velocities were
normalized with respect to the maximum velocity. The
wall-spacing distance was also normalized. To avoid
congestion, separate figures were plotted for each
comparison. Next, we again investigated Poiseuille flow,
but this time for different types of finite elements, such
as three-node triangular, four-node quadrilateral, and
eight-node three-dimensional solid, using the Galerkin
method (Fig. 3). All solutions were in good agreement
with the analytical solution.

In the second example, we investigated flow between
two co-axial circular cylinders. The ratio of the radii
between the outer and inner cylinders was 3. The inner
cylinder was kept at rest, while the outer cylinder was
rotating at a constant angular speed. The fixed velocity
condition was implemented using the bounce-back
technique for the particle velocity distribution functions
so that the velocity vector from (6) becomes zero. On the
other hand, for the non-zero velocity condition, the particle
velocity distribution functions are properly selected to
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Fig. 7. Horizontal Velocity Profile along the Vertical
Centerline of the Domain

satisfy the given velocity condition. The FELBM and
analytical solutions are plotted in Fig. 4. Velocity in that
figure is normalized with respect to the outer cylinder
velocity. In addition, the inner cylinder is at zero, and the
outer cylinder is at one. Both the Galerkin method and the
method of moment were used with four-node quadrilateral
finite elements. The numerical results are in good agreement
with the exact solution.

In the third example, we investigated flow in a linearly
converging duct. Its geometry and mesh is shown in Fig.
5. A pressure difference was applied between the left inlet
and right outlet. Density was determined from pressure
using the pressure-density relation. The inlet and outlet
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Fig. 8. Vertical Velocity Profile along the Horizontal
Centerline of the Domain

particle velocity distribution functions were computed
for the given density and they were then prescribed along
the boundaries. Transient flow analyses were conducted
using FELBM and traditional CFD employing the finite
volume method. After 10,000 time steps, the two solutions
were compared in Fig. 6, and they are in good agreement.

In the final example, we investigated cavity driven
flow. The top side of the cavity was given contact velocity
u. The other sides were rigid walls. The Reynolds number
ud/y was considered to be 100, where d is the dimension
of the square cavity, and v is the fluid kinematical viscosity.
The present FELBM solution was obtained using a 20 x
20 mesh with four-node quadrilateral elements. The results
were compared to the CFD solution from Ref. [10]. Fig.
7 shows the horizontal velocity profile along the vertical
centerline of the domain, while Fig. 8 shows the vertical
velocity across the horizontal centerline of the domain.
There is good agreement between the two solutions for
both velocities.

4. CONCLUSIONS

A lattice Boltzmann technique based on the weighted
residual finite element formulation was developed. This
technique is able to simulate complex domain shapes
essential for fluid-structure interaction studies in commercial
nuclear power systems.

Four different numerical examples were presented to
demonstrate the developed FELBM technique. The first
example investigated two-dimensional steady-state
Poiseuille flow between two parallel walls. The FELBM
techniques using the Galerkin, collocation, and moments
methods all using four-node quadrilateral elements were
applied to the problem. Additional element geometries
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were used for the Galerkin method. All solutions agreed
well with the analytical solution. The second example
investigated flow between two co-axial circular cylinders.
Both the Galerkin method and the method of moment used
four-node quadrilateral finite elements. The numerical
results are in good agreement with the exact solution. The
third example investigated flow in a linearly converging
duct. Transient flow analyses were conducted using
FELBM and traditional CFD. It was shown that the two
solutions are in good agreement. The last example
investigated cavity driven flow. The FELBM and CFD
solutions were compared. The horizontal and vertical
velocity profiles as calculated by both FELBM and CFD
are in good agreement.

Our results indicated that FELBM, as developed in
this work, is a promising method that can be used for the
study of fluid-structure interaction problems.
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