10 Gbit/s 128 채널 고밀도 파장다중화 신호를 위해 EDFA와 라만 증폭기를 이용한 320km 광전송 실험

320km Optical Transmission using EDFA and Raman amplifier for 10Gbit/s 128 Channel DWDM Signals

  • 최보훈 (동아대학교 신소재물리학과)
  • 발행 : 2009.06.30

초록

128 채널 고밀도 파장다중화 광신호들을 위한 320km 광전송 링크가 시뮬레이션으로 계산되고 실험으로 구현되었다. 이 링크에서 사용된 광섬유 증폭기은 분산형 라만 증폭기와 C 대역과 L 대역을 함께 증폭시킬 수 있는 이중 대역 EDFA가 함께 고려되어 컴퓨터 시뮬레이션을 통해 링크의 특성이 계산되었다. 여기서 계산된 값을 구현할 수 있도록 증폭기의 구조가 최적화되고 이 구조가 모듈로 제작되었다. 제작된 증폭기를 사용하여 구현된 링크에서 측정된 320km 거리에서의 광신호잡음비는 각 대역에서 평균 25dB였고 이는 처음 링크 계산 시에 의도된 값과 잘 일치하였다.

320km optical transmission link for 128 channel DWDM (dense wavelength-division-multiplexing) signals is simulated and fabricated. An optical fiber amplifier for the link is composed of a distributed Raman amplifier and dual C/L-band EDFAs which are optimized for the performances of an optical amplifier obtained from the simulation. Gain and NF of the optimized EDFAs are above 19dB and below 7.5dB, respectively. The resultant OSNRs (optical signal to noise ratios) of the link are average 25dB on each band.

키워드

참고문헌

  1. R. Freund, L. Molle, F. Raub, C. Caspar, M. Karkri, Ch. Weber, 'Triple-(S/C/L)-band WDM transmission using erbium-doped fibre amplifiers,' 31st European Conference on Optical Communication(ECOC), Vol.1, pp.69-70, 2005 https://doi.org/10.1049/cp:20050382
  2. C. X. Yu, S. Chandrasekhar, T. Zhou, D. T. Neilson, '0.8 bit/s/Hz spectral efficiency at 10 Gbit/s via vestigial-sideband filtering,' Electronics Letters Vol.39, No.2, pp.225-227, 2003 https://doi.org/10.1049/el:20030120
  3. J. D. Downie, M. Sauer, J. Hurley, '1500 km transmission over NZ-DSF without in-line or post-compensation of dispersion for 38/spl times/10.7 Gbit/s channels,' Electronics Letters, Vol.42, No.11, pp.650-652, 2006 https://doi.org/10.1049/el:20061184
  4. B.-H. Choi, C.-B. Kim, and J. Ko 'An all-optically gain-controlled two-stage amplifier using two independent feedback loops', IEEE Photonics Technology Letters, Vol.19, No.18, pp.1353-1355, Sep., 2007 https://doi.org/10.1109/LPT.2007.902954
  5. A. H. Gnauck, and P. J. Winzer, 'OpticalPhase-Shift -KeyedTransmission,' J. Lightwave Technology, Vol.23, No.1, pp.115-130, 2005 https://doi.org/10.1109/JLT.2004.840357
  6. B.-H. Choi, H.-H. Park, and M.-J. Chu, 'New pump wavelength of 1540nm-band for Long-Wavelength- Band Erbium-Doped Fiber Amplifier (L-band EDFA)' IEEE Journal of Quantum Electronics, Vol.39, No.10, pp.1272-1280, 2003 https://doi.org/10.1109/JQE.2003.817582
  7. U.-C. Ryu, K. Oh, W. Shin, and U. C. Paek, 'Inherent enhancement of gain flatness and achievement of broad gain bandwidth in erbium-doped silica fiber amplifiers,' IEEE J. Quantum Electronics, Vol.38, No.2, pp.149-161, 2002 https://doi.org/10.1109/3.980267
  8. J. B. Leroy, P. Marmier, C. Laval and O. Gautheron, '32 x 10 Gbit/s transmission over 8000km using hybrid Raman-Erbium doped fiber optical amplifiers', OFC'00, TuJ4-2, USA, 2000
  9. A. Mori, H. Masuda, K. Shikano, and M. Shimizu, 'Ultra-wide-band tellurite-based fiber Raman amplifier,' J. of Lightwave Technology, Vol.21, No.5, pp.1300-1306, 2003 https://doi.org/10.1109/JLT.2003.810917
  10. 5. S. N. Knudsen, B. Zhu, L. E. Nelson, M. O. Pederson, D. W. Peckham, and S. Stulz, '420 Gbit/ s 4210 Gbit/ sWDM transmission over 4000 km of UltraWave fibre with 100 km dispersion-managed spans and distributed Raman amplification,' Electron. Lett. No.15, pp.965–966, 2001 https://doi.org/10.1049/el:20010653
  11. B. Pedersen, B. A. Thompson, S. Zemon, W. J. Miniscalco, and T. Wei, 'Power requirement for erbium-doped fibre amplifiers pumped in the 800, 980, and 1480nm bands,' IEEE Photonics Technology Letters, Vol.4, No.1, pp.46-49, 1992 https://doi.org/10.1109/68.124872
  12. D. M. Baney and J.Stimple, 'WDM EDFA gain characterization with a reduced set of saturating channels,' IEEE Photonics Technology Letters, Vol.8, No.12, pp.1615-1617, 1996 https://doi.org/10.1109/68.544695