나노섬모의 자연모사 기술

Biomimetics of Nano-pillar

  • 허신 (한국기계연구원 프린팅공정/자연모사연구실) ;
  • 최홍수 (한국기계연구원 프린팅공정/자연모사연구실) ;
  • 이규항 (한국기계연구원 프린팅공정/자연모사연구실) ;
  • 김완두 (한국기계연구원 프린팅공정/자연모사연구실)
  • 발행 : 2009.06.30

초록

내이의 달팽이관은 기저막(basilar membrane)과 유모세포(hair cells)라는 두 가지 중요한 요소로 이루어져 있다. 기저막은 귀로 들어오는 소리를 주파수에 따라 분리하는 기능을 가지고 있으며, 기저막 위에 있는 유모세포는 생체전기 신호를 발생시키는 기계적 감각 수용기관이다. 인간의 생체청각기구를 모사한 인공와우와 신개념의 인공감각기관을 개발하기 위해서, 본 논문에서는 ZnO 압전 나노필라를 사용하여 인공유모세포(artificial hair cell)를 구현할 수 있는 핵심 기반 기술인 생체모사 기술을 연구하였다. 그 구체적인 방법으로 ZnO 나노필라를 저온성장법으로 유연기판에, 고온성장법으로 실리콘 웨이퍼에 성장시켰다. 유연기판과 실리콘 웨이퍼 위에 ZnO 나노필라를 성장 전에 미리 패턴을 만들었고, 기판에 선택적으로 ZnO 나노필라를 성장시켰다. 또한 ZnO 나노필라의 동적 정적 거동을 이해하기 위해 다중 물리 해석기법을 사용하여 ZnO 나노필라의 electric potential, von Mises stress, 변형량 등을 분석하였다. 본 연구에서는 ZnO 나노필라를 제작 및 패터닝하는 기술과 최적화하는 다중 물리 해석기술을 이용하여 인공 유모세포를 구현하는 핵심기술을 개발하였다.

The cochlea of the inner ear has two core components, basilar membrane and hair cells. The basilar membrane disperses incoming sound waves by their frequencies. The hair cells are on the basilar membrane, and they are the sensory receptors generating bioelectric signals. In this paper, a biomimetic technology using ZnO piezoelectric nano-pillar was studied as the part of developing process for artificial cochlea and novel artificial mechanosensory system mimicking human auditory senses. In particular, ZnO piezoelectric nano-pillar was fabricated by both low and high temperature growth methods. ZnO piezoelectric nano-pillars were grown on solid (high temperature growth) and flexible (low temperature growth) substrates. The substrates were patterned prior to ZnO nano-pillar growth so that we can selectively grow ZnO nano-pillar on the substrates. A multi-physical simulation was also conducted to understand the behavior of ZnO nano-pillar. The simulation results show electric potential, von Mises stress, and deformation in the ZnO nano-pillar. Both the experimental and computational works help characterize and optimize ZnO nano-pillar.

키워드

참고문헌

  1. D. P. Corey, 'What is the hair cell transduction channel?', J. Physiol., 576, 23 (2006) https://doi.org/10.1113/jphysiol.2006.116582
  2. P. S. Guth, P. Perin, C. H. Norris, and P. Valli, 'The vestibular hair cells: Post-transactional signal processing', Prog. Neurobio., 54, 193 (1998) https://doi.org/10.1016/S0301-0082(97)00068-3
  3. M. Strassmaier and P. G. Gillespie, 'The hair cell's transduction channel', Cur. Opin. Neurobio., 12, 380 (2002) https://doi.org/10.1016/S0959-4388(02)00344-6
  4. L. Chen, P. G. Trautwein, M. Shero, and R. J. Salvi, 'Tuning, spontaneous activity and tonotopic map in chicken cochlear ganglion neurons following sound-induced hair cell loss and regeneration', Hear. Res., 98, 152 (1996) https://doi.org/10.1016/0378-5955(96)00086-X
  5. D. Robert, M. P. Read, and R. R. Hoy, 'The tympanal hearing organ of the parasitoid fly Ormia ochracea (Diptera, Tachinidae, Ormiini)', Cell Tis. Res., 275, 63 (1993) https://doi.org/10.1007/BF00305376
  6. R. J. Goodyear, W. Marcotti, C. J. Kros, and G. P. Richardson, 'Development and properties of stereociliary link types in hair cells of the mouse cochlea', J. Comp. Neur., 485, 75 (2005) https://doi.org/10.1002/cne.20513
  7. B. Kachar, M. Parakkal, M. Kurc, Y. Zhao, and P. G. Gillespie, 'High-resolution structure of hair-cell tip links', Proc. Nat. Aca. Sci., 97, 13336 (2000) https://doi.org/10.1073/pnas.97.24.13336
  8. A. N. Salt and J. E. DeMott, 'Longitudinal endolymph movements and endocochlear potential changes induced by stimulation at infrasonic frequencies', J. Acou. Soc. Ame., 106, 847 (1999) https://doi.org/10.1121/1.427101
  9. S. S. Gill and A.N. Salt, 'Quantitative differences in endolymphatic calcium and endocochlear potential between pigmented and albino guinea pigs', Hear. Res., 113, 191 (1997) https://doi.org/10.1016/S0378-5955(97)00141-X
  10. W. A. Svrcek-Seiler, I. C. Gebeshuber, F. Rattay, T. S. Biro, and Harald Markum, 'Micromechanical Models for the Brownian Motion of Hair Cell Stereocilia', J. Theo. Bio., 193, 623 (1998) https://doi.org/10.1006/jtbi.1998.0729
  11. Y. W. Hwang, D. Kim, P. W. Heo, S. J. Park, E. S. Yoon, 'The Mechanical Model Analysis of the Stereocilia Bundle', KSME fall conf., pp. 1702-1706 (2005)
  12. D. N. Furness, D. E. Zetes, C. M. Hackney, and C. R. Steele, 'Kinematic analysis of shear displacement as a means for operating mechanotransduction channels in the contact region between adjacent stereocilia of mammalian cochlear hair cells', Proc. R. Soc. Lon. Biol. Sci., 264, 45 (1997) https://doi.org/10.1098/rspb.1997.0007
  13. R. B. Silver, A. P. Reeves, A. Steinacker, and S. M. Highstein, 'Examination of the cupula and stereocilia of the horizontal semicircular canal in the toadfish Opsanus tau', J. Comp. Neur., 402, 48 (1998) https://doi.org/10.1002/(SICI)1096-9861(19981207)402:1<48::AID-CNE4>3.0.CO;2-9
  14. M. G. Langer, A. Koitschev, H. Haase, U. Rexhausen, J. K. H. Horber, and J. P. Ruppersberg, 'Mechanical stimulation of individual stereocilia of living cochlear hair cells by atomic force microscopy', Ultramicro., 82, 269 (2000) https://doi.org/10.1016/S0304-3991(99)00136-9
  15. W.L. Valk, M.L.Y.M. Oei, J.M. Segenhout, F. Dijk, I. Stokroos, F.W.J. Albers, 'The Glycocalyx and Stereociliary Interconnections of the Vestibular Sensory Epithelia of the Guinea Pig, A Freeze-Fracture, Low-Voltage Cryo-SEM, SEM and TEM Study', J. Oto-Lary.y, Head Neck sur., 64, 242 (2002) https://doi.org/10.1159/000064137
  16. M. G. Langer, S. Fink, A. Koitschev, U. Rexhausen, J. K. H. Hörber, and J. P. Ruppersberg, 'Lateral Mechanical Coupling of Stereocilia in Cochlear Hair Bundles', Biophy. J., 80, 2608 (2001) https://doi.org/10.1016/S0006-3495(01)76231-5
  17. J. J. Zhou, F. Noca, and M. Gharib, 'Flow conveying and diagnosis with carbon nanotube arrays', Nanotech., 17, 4845 (2006) https://doi.org/10.1088/0957-4484/17/19/011
  18. F. Li, L. Zhang, and R. M. Metzger, 'On the Growth of Highly Ordered Pores in Anodized Aluminum Oxide', Chem. Mater., 10, 2470 (1998) https://doi.org/10.1021/cm980163a
  19. J. Liang, H. Chik, A. Yin, and J. Xu, 'Two-dimensional lateral superlattices of nanostructures: Nonlithographic formation by anodic membrane template', J. Appl. Phys., 91, 2544 (2002) https://doi.org/10.1063/1.1433173
  20. A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Blasi, A. Heinzel, D. Sporn, W. Doll, and V. Wittwer, 'Antireflective transparent covers for solar devices', Solar Ener., 68, 357 (2000) https://doi.org/10.1016/S0038-092X(00)00022-0
  21. H. S. Choi, J. L. Ding, A. Bandyopadhyay, and S. Bose, 'Finite element analysis of piezoelectric thin film membrane structures', IEEE Trans. Ultrason. Ferroelect. Freq. Contr., 54, 2036 (2007) https://doi.org/10.1109/TUFFC.2007.498
  22. H. S. Choi, J. L. Ding, A. Bandyopadhyay, M. J. Anderson, and S. Bose, 'Characterization and modeling of a piezoelectric micromachined ultrasonic transducer with a very large length/width aspect ratio', J. Micromech. Microeng., 18, 10 (2008)