A Tyrosinase Inhibitor Isolated from the Seeds of Eriobotrya japonica

비파 씨로부터 Tyrosinase 저해 활성물질의 분리

  • Kim, Tae-Hoon (Department of Herbal Medicinal Pharmacology, Daegu Haany University) ;
  • Shin, Seung-Ryeul (Faculty of Herbal Food & Nutrition, Daegu Haany University) ;
  • Kim, Tae-Wan (Faculty of Food Science & Biotechnology, Andong National University) ;
  • Lee, In-Chul (Senior Industry Cluster Agency, Youngdong University) ;
  • Park, Moon-Young (Subtropical Fruit Crops Experiment Station, Jeonnam Agricultural Research & Extension Services) ;
  • Jo, Cheo-Run (Department of Animal Science and Biotechnology, Chungnam National University)
  • 김태훈 (대구한의대학교 한약재약리학과) ;
  • 신승렬 (대구한의대학교 한방식품조리영양학부) ;
  • 김태완 (안동대학교 생명자원과학부) ;
  • 이인철 (영동대학교 고령친화산업 기업지원센터) ;
  • 박문영 (전남농업기술원 난지과수시험장) ;
  • 조철훈 (충남대학교 동물자원생명과학과)
  • Published : 2009.06.30

Abstract

Activity-guided isolation from the ethylacetate (EtOAc)-soluble portion of a methanolic extract of the seeds of Eriobotrya japonica, using several bioassays, led to the isolation and identification of six phenolic compounds of previously known structure: benzaldehyde (1), chlorogenic acid (2), caffeic acid (3), benzoic acid (4), ferulic acid (5), and amygdalin (6). Of these, benzaldehyde (1) exhibited tyrosinase inhibitory activity in a bioassay. In addition, chlorogenic acid (2) and caffeic acid (3) were found to have strong antioxidative effects on 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging and superoxide dismutase (SOD)-like activity.

비파 씨를 MeOH로 침지 추출하여 얻어진 추출물을 n-hexane, EtOAc, n-BuOH 및 $H_2O$로 용매 분획하였다. 이중 tyrosinase, DPPH 및 SOD 활성이 상대적으로 높은 EtOAc 분획에 대해 column chromatography를 이용하여 6개의 페놀성 화합물을 분리하였다. 각 화합물의 화학구조는 NMR 스펙트럼 데이터 해석 및 표품과의 HPLC 직접 비교를 통하여 benzaldehyde (1), chlorogenic acid (2), caffeic acid (3), benzoic acid (4), ferulic acid (5) 및 amygdalin (6)으로 동정하였다. 이들 화합물중 benzaldehyde (1)는 125 mg/mL농도에서 tyrosinase저해활성이 70.8%로 나타나 positive control인 kojic acid의 56.3%보다 높게 나타났다. 또한 분리한 화합물 중 DPPH 라디칼 소거능은 12.5 mg/mL 실험농도에서 chlorogenic acid (2)와 caffeic acid (3)가 각각 43.7, 81.5%의 저해활성을 나타내었으며, 비파 씨의 SOD 활성물질은 chlorogenic acid (2)임을 확인하였다. 향후 이들 활성물질의 활성 기작에 대한 연구가 필요하며 본 연구결과는 보다 안전하고 우수한 tyrosinase 및 라디칼소거능을 가지는 새로운 선도화합물 발굴을 위한 기초자료로 이용될 수 있을뿐만 아니라 비파 씨의 식물 화학적 성분에 대한 기초자료로 이용될 수 있을 것으로 사료된다.

Keywords

References

  1. Prota, G. (1980) Recent advances in the chemistry of melanogenesis in mamals. J. Invest. Dermatol., 75, 122-127 https://doi.org/10.1111/1523-1747.ep12521344
  2. Pave,l S, Muskiet, F.A. (1983) Eumelanin (precursor) metabolites as markers for pigmented malignant melanoma: a preliminary report. Cancer Detect Prev., 6, 311-316
  3. Hearing, V.J., Jimenez, M. (1987) Mammalian tyrosinasethe critical regulatory control point in melanocyte pigmentation. Int. J. Biochem., 19, 1141-1147 https://doi.org/10.1016/0020-711X(87)90095-4
  4. Baek, Y.S., Ryu, Y.B., Curtis-Long, M.J., Ha, T.J., Rengasamy, R., Yang, M.S., Park, K.H. (2009) Tyrosinase inhibitory effects of 1,3-diphenylpropanes from broussonetia kazinoki. Bioorg. Med. Chem., 17, 35-41 https://doi.org/10.1016/j.bmc.2008.11.022
  5. Maeda, K., Naitou, T., Umishio, K., Fukuhara, T., Motoyama, A. (2007) A novel melanin inhibitor: hydroperoxy traxastane-type triterpene from flowers of Arnica montana. Biol. Pharm. Bull. 30, 873-87 https://doi.org/10.1248/bpb.30.873
  6. Badria, F.A., elGayyar, M.A. (2001) A new type pf tyrosinase inhibitors from natural products as potential treatments for hyperpigmentation. Boll. Chim. Farm., 140, 267-71
  7. Kim, H.J., Jo, C.H., Kim, T.H., Kim, D.S., Park, M.Y., Byun, M.W. (2006) Biological evaluation of the methanolic extract of Eribotrya japonica and its irradiation effect. Korean J. Food. Sci. Technol., 38, 684-690
  8. Namba, T. (1994) The encyclopedia of Wakan-Yaku (Traditional Sinojapanese Medicines) with color pictures. Hoikusa, Osaka. Vol II., 80-82
  9. Shimizu, M., Fukumura, H., Tsuji, H., Tanaami, S., Hayashi, T., Morita, N. (1986) Anti-inflammatory constituents of topically applied crude drugs. I. Constituents and anti-inflammatory effect of Eriobotrya japonica LINDL. Chem. Pharm. Bull., 34, 2614-2617 https://doi.org/10.1248/cpb.34.2614
  10. Liang, Z.Z., Aquino, R., De Feo, V., De Simone, F.,Pizza, C. (1990) Polyhydroxylated Triterpenes from Eriobotrya japonica. Planta Medica, 56, 330-332 https://doi.org/10.1055/s-2006-960973
  11. De Tommasi N., De Simone F., Cirino, G, Cicala, C, Pizza, C. (1991) Hypoglycemic effects of sesquiterpene glycosides and polyhydroxylated triterpenoids of Eriobotrya japonica. Planta Medica, 57, 414-416 https://doi.org/10.1055/s-2006-960137
  12. De Tommasi N., De Simone F., Pizza, C., Nahmood, N., Moore, P.S., Conti, C., Orsi, N., Stein, M.L. (1992) Constituents of Eriobotrya japonica. A study of their antiviral properties. J. Nat. Prod., 55, 1067-1073 https://doi.org/10.1021/np50086a006
  13. Young, H.S., Chung, H.Y., Lee, C.K., Park, K.Y., Yokozawa, T., Oura, H. (1994) Ursolic acid inhibits aflatoxin B1-induced mutagenicity in a Salmonella assay system. Biol. Pharm. Bull., 17, 990-992 https://doi.org/10.1248/bpb.17.990
  14. Taniguchi, S., Imayoshi, Y., Kobayashi, E., Takamatsu, Y., Ito, H., Hatano, T., Sakagami, H., Tokuda, H., Nishino, H., Sugita, D., Shimura, S., Yoshida, T. (2002) Production of bioactive triterpenes by Eriobotrya japonica calli. Phytochem.. 59, 315-23 https://doi.org/10.1016/S0031-9422(01)00455-1
  15. De Tommasi N., De Simone F., Pizza, C., Mahmood, N., Moore, P.S., Conti, C., Orsi, N., Stein, M.L. (1992) Constituents of Eriobotrya japonica. A study of their antiviral properties. J. Nat. Prod., 55, 1067-1073 https://doi.org/10.1021/np50086a006
  16. Jung, H.A., Park, J.C., Chung, H.Y., Kim, J., Choi, J.S. (1999) Antioxidant flavonoids and chlorogenic acid from the leaves of Eriobotrya japonica. Arch. Pharm. Res., 22, 213-218 https://doi.org/10.1007/BF02976549
  17. Ito, H., Kobayashi, E., Takamatsu, Y., Li, SH., Hatano, T., Sakagami, H., Kusama, K., Satoh, K., Sugita, D., Shimura, S., Itoh, Y., Yoshida, T. (2000) Polyphenols from Eriobotrya japonica and their cytotoxicity against human oral tumor cell lines. Chem. Pharm. Bull.. 48, 687-693 https://doi.org/10.1248/cpb.48.687
  18. Kawahara, N., Satake, M., Goda, Y. (2002) A new acylated flavonol glycoside from the leaves of Eriobotrya japonica. Chem. Pharm. Bull., 50, 1619-1620 https://doi.org/10.1248/cpb.50.1619
  19. Kwon, H.J., Kang, M.J., Kim, H.J., Choi, J.S., Paik, K.J., Chung, H.Y. (2000) Inhibition of NF kappaB by methyl chlorogenate from Eriobotrya japonica. Mol. Cells, 10, 241-246
  20. Ito, H., Kobayashi, E., Li, S.H., Hatano, T., Sugita, D., Kubo, N., Shimura, S., Itoh, Y., Yoshida, T. (2001) Megastigmane glycosides and an acylated triterpenoid from Eriobotrya japonica. J. Nat. Prod., 64, 737-740 https://doi.org/10.1021/np010004x
  21. Ito, H., Kobayashi, E., Li, S.H., Hatano, T., Sugita, D., Kubo, N., Shimura, S., Itoh, Y., Tokuda, H., Nishino, H., Yoshida, T. (2002) Antitumor activity of compounds isolated from leaves of Eriobotrya japonica. J. Agric. Food. Chem., 50, 2400-2403 https://doi.org/10.1021/jf011083l
  22. Yokota, J., Takuma, D., Hamada, A,, Onogawa, M., Yoshioka, S., Kusunose, M., Miyamura, M., Kyotani, S., Nishioka, Y. (2006) Scavenging of reactive oxygen species by Eriobotrya japonica seed extract. Biol. Pharm. Bull., 29, 467-471 https://doi.org/10.1248/bpb.29.467
  23. Tanaka. K., Nishizono, S., Makino, N., Tamaru, S., Terai, O., Ikeda, I. (2008) Hypoglycemic activity of Eriobotrya japonica seeds in type 2 diabetic rats and mice. Biosci. Biotechnol. Biochem., 72, 686-693 https://doi.org/10.1271/bbb.70411
  24. Yokota, J., Takuma, D., Hamada, A., Onogawa, M., Yoshioka, S., Kusunose, M., Miyamura, M., Kyotani, S., Nishioka, Y. (2008) Gastroprotective activity of Eriobotrya japonica seed extract on experimentally induced gastric lesions in rats. Nat. Med., 62, 96-100
  25. Blois, M.S. (1958) Antioxidant activity determination by the use of a stable free radical. Nature, 181, 1199-1200 https://doi.org/10.1038/1811199a0
  26. Yagi, A., Kanbara, T., Morinobu, N. (1987) Inhibition of mushroom-tyrosinase by aloe extract. Planta Med., 53, 515-517 https://doi.org/10.1055/s-2006-962798
  27. Stefan, M., Gudrun, M. (1974) Involvement of the superoxide anion radical in the autooxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem., 47, 469-474 https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
  28. Morishita, H., Iwahashi, H., Osaka, N., Kido, R. (1984) Chromatographic separation and identification of naturally occurring chlorogenic acids by 1H nuclear magnetic resonance spectroscopy and mass spectrometry. J. Chromatogr., 19, 253-60
  29. Kwon, Y.S., Won, H.M., Kim, C.M. (2000) Flavonoids from Indigofera pseudo-tinctoria stem. Korean J. Pharmacogn., 31, 280-283
  30. Andray, C., Wingernitz, F. (1982) Structures of Vervascoside and Orobanchoside, caffeic acid sugar esters from Orobanche Rapum-Genistate. Phytochem. 21, 1123-1127 https://doi.org/10.1016/S0031-9422(00)82429-2
  31. Seeram, N.P., Cichewicz, R.H., Chandra, A., Nair, M.G. (2003) Cyclooxygenase inhibitory and antioxidant compounds from crabapple fruits. J. Agric. Food Chem., 51, 1948-1951 https://doi.org/10.1021/jf025993u