DOI QR코드

DOI QR Code

Effects of Solvent Extracts from Dried Beet (Beta vulgaris) on Antioxidant in Cell Systems and Growth of Human Cancer Cell Lines

건조 비트(Beta vulgaris) 추출물의 Cell System에서 항산화 및 항암 효과

  • Jang, Joo-Ri (Division of Marine Environment & Bioscience, Korea Maritime University) ;
  • Kim, Kyung-Kun (Division of Marine System Engineering, Korea Maritime University) ;
  • Lim, Sun-Young (Division of Marine Environment & Bioscience, Korea Maritime University)
  • 장주리 (한국해양대학교 해양환경생명과학부) ;
  • 김경근 (한국해양대학교 기관시스템공학부) ;
  • 임선영 (한국해양대학교 해양환경생명과학부)
  • Published : 2009.07.31

Abstract

The inhibitory effects of solvent extracts from dried beet (Beta vulgaris) on $H_2O_2$-induced oxidative stress in cell systems and on the growth of cancer cell lines (HT-29 human colon cancer and AGS human gastric adenocarcinoma cells) were investigated. Inhibitory effects of acetone with methylene chloride (A+M) and methanol (MeOH) extracts on the growth of HT-29 and AGS cancer cells increased in a dose dependent manner (p<0.05). The inhibitory effect was more significant on the growth of AGS cells and A+M extracts had a higher inhibitory effect compared to MeOH extracts. The treatments of hexane, 85% aq. methanol, butanol and water fractions significantly inhibited the growth of both cancer cells (p<0.05). Among fractions, hexane and 85% aq. methanol fractions showed higher inhibitory effects. In order to determine the protective effect on $H_2O_2$-induced oxidative stress, DCHF-DA (dichlorodihydrofluorescin diacetate) assay was conducted. The A+M and MeOH extracts of dried beet appeared to significantly reduce the levels of intracellular (ROS) with dose responses. Among the fractions, 85% methanol fractions showed a higher protective effect on production of lipid peroxides. These results indicate that the intake of dried beet may improve oxidative stress in cell and reduce cancer risk.

저온 진공 공정으로 건조된 비트를 유기용매로 추출하여 이들 비트 추출물 및 분획물들에 의한 인체 결장암 및 위암세포에 대한 증식 및 세포 내 활성산소종 억제 효과에 대해 검토하였다. 인체 결장암세포(HT-29)의 경우, A+M 추출물은 0.5 mg/mL 첨가농도에서 65%의 암세포 증식 억제효과를 나타내었고(p<0.05), MeOH 추출물은 A+M 추출물과 비교하였을 때 전반적으로 낮은 활성을 나타내었음을 관찰하였다. 건조 비트 추출물을 hexane, 85% aq. MeOH, BuOH, water로 다시 추출하여 얻어진 각각의 분획물들을 농도별로 처리하였을 때 특히 hexane 및 85% aq. MeOH 분획물은 낮은 농도에서부터 활성을 나타내어 0.5 mg/mL 농도에서 76% 이상의 높은 암세포 증식 억제효과(p<0.05)를 나타내었다. 인체 위암세포(AGS)에 대한 결과에서 A+M 추출물은 인체 결장암세포(HT-29)의 결과와 비교했을 때 암세포증식 억제효과가 높았고, MeOH 추출물은 A+M 추출물에 비해 낮은 활성을 나타내었으나 앞서 인체 결장암세포(HT-29)에 비해 다소 높은 암세포 성장 억제효과를 보였다. 건조 비트 추출물의 분획물들을 농도별로 인체 위암세포(AGS)에 처리했을 때 hexane과 85% aq. MeOH 분획물은 앞서의 인체 결장암세포(HT-29)의 결과와 유사하게 낮은 농도에서부터 활성이 나타나 0.25 mg/mL 이상의 농도에서 77% 이상의 억제효과가 나타났다. 인체 섬유육종세포(HT1080) 내 활성산소종 억제 실험에서 건조 비트 A+M 및 MeOH 추출물은 농도 의존적으로 측정시간 120분 동안 $500{\mu}M$ $H_2O_2$만을 처리한 control군에 비해 세포 내 활성산소종을 크게 억제시켰다. 건조 비트 분획물들을 인체 섬유육종세포(HT1080)에 처리했을 때 첨가농도 0.1 mg/mL로 처리하였을 때 BuOH 분획물을 제외한 기타 분획물들의 경우 control군보다는 낮은 수치를 나타내어 우수한 항산화 활성을 보였다. 첨가농도 0.25 mg/mL에서 85% aq. MeOH 분획물은 세포 내 활성산소종을 감소시키는데 우수한 능력을 나타내었고 hexane과 BuOH 분획물은 $500{\mu}M$ $H_2O_2$만을 처리한 control군에 비해서는 활성산소종을 감소시켰으나 blank 군보다는 높았다. 따라서 세포 내 활성산소종 감소에 의한 항산화 활성은 85% aq. MeOH 분획물에서 높았고 water 분획물의 효과가 가장 낮았음을 살펴 볼 수가 있었다.

Keywords

References

  1. Constabel F, Nassif-Makki H. 1971. Betalainbildung in beta-calluskulturen. Ber Dtsch Bot Ges 84: 629-636
  2. MacLennan R, Da Costa J, Day NE, Law CH, Ng YK, Shanmugaratnam K. 1977. Risk factors for lung cancer in Singapore Chinese, a population with high female incidence rates. Int J Cancer 20: 854-860 https://doi.org/10.1002/ijc.2910200606
  3. Modan B, Cuckle H, Lubin F. 1981. A note on the role of dietary retinol and carotene in human gastrointestinal cancer. Int J Cancer 28: 421-424 https://doi.org/10.1002/ijc.2910280405
  4. Mettlin C, Granham S. 1979. Dietary risk factors in human bladder cancer. Am J Epidemiol 110: 255-263 https://doi.org/10.1093/oxfordjournals.aje.a112810
  5. Graham S, Dayal H, Swanson M, Mittelman A, Wilkinson G. 1978. Diet in the epidemiology of cancer of the colon and rectum. J Natl Cancer Inst 61: 709-714
  6. Kanner J, Harsel S, Granit R. 2001. Betalains-a new class of dietary cationized antioxidants. J Agric Food Chem 49: 5178-5185 https://doi.org/10.1021/jf010456f
  7. Cai Y, Sun M, Corke H. 2003. Antioxidant activity of betalains from plants of the Amaranthaceae. J Agric Food Chem 51: 2288-2294 https://doi.org/10.1021/jf030045u
  8. Lapidot T, Harel S, Akiri B, Granit R, Kanner J. 1999. pH-dependent forms of red wine anthocyanins as antioxidants. J Agric Food Chem 49: 5178-5185
  9. Hung HC, Joshipura KJ, Jiang R, Hu FB, Hunter D, Smith-Warner SA, Colditz GA, Rosner B, Spiegelman D, Willett WC. 2004. Fruit and vegetable intake and risk of major chronic disease. J Natl Cancer Inst 96: 1557-1584 https://doi.org/10.1093/jnci/djh296
  10. Cao G, Sofic E, Prior RL. 1996. Antioxidant capacity of tea and common vegetables. J Agric Food Chem 44: 3426-3431 https://doi.org/10.1021/jf9602535
  11. Bresnick E, Birt DF, Wolterman K, Wheeler M, Markin RS. 1990. Reduction in mammary tumorigenesis in the rat by cabbage and cabbage residue. Carcinogenesis 11: 1159-1163 https://doi.org/10.1093/carcin/11.7.1159
  12. Park KY, Lee KI, Lee SK. 1992. Inhibitory effect of greenyellow vegetables on the mutagenicity in Salmonella assay system and on the growth on AZ-521 human gastric cancer cells. J Korean Soc Food Nutr 21: 149-153
  13. Colditz GA, Branch LG, Lipnick RJ, Willett WC, Rosner B, Posner BM, Hennekens CH. 1985. Increased green and yellow vegetable intake and lowered cancer deaths in an elderly population. Am J Clin Nutr 41: 32-36
  14. Hu JF, Zhang SF, Jia EM, Wang QQ, Liu SD, Liu YY, Wu YP, Cheng YT. 1988. Diet and cancer of the stomach: a case-control study in China. Int J Cancer 15: 331-335 https://doi.org/10.1002/ijc.2910410302
  15. Kusamran WR, Tepsuwan A, Kupradinun P. 1998. Antimutagenic and anticarcinogenic potentials of some Thai vegetables. Mutat Res 402: 247-258 https://doi.org/10.1016/S0027-5107(97)00304-7
  16. Hirayama T. 1979. Diet and cancer. Nutr Cancer 1: 67-81 https://doi.org/10.1080/01635587909513632
  17. Kvale G, Bjelke E, Gart JJ. 1983. Dietary habits and lung cancer risk. Int J Cancer 31: 397-405 https://doi.org/10.1002/ijc.2910310402
  18. Pavlov A, Kovatcheva P, Tuneva D, Ilieva M, Bley T. 2005. Radical scavenging activity and stability of betalains from Beta vulgaris hairy root culture in simulated conditions of human gastrointestinal tract. Plant Food Human Nutr 60: 43-47 https://doi.org/10.1007/s11130-005-5098-z
  19. Lee CH, Wettasinghe M, Bolling BW, Parkin KL. 2005. Betalains, phase II enzyme-inducing components from red beetroot (Beta vulgaris L.) extracts. Nutr Cancer 53: 91-103 https://doi.org/10.1207/s15327914nc5301_11
  20. Gliszczynska-Swiglo A, Szymusiak H, Malinowska P. 2006. Betanin, the main pigment of red beet: Molecular origin of its exceptionally high free radical-scavenging activity. Food Addit Contam 23: 1079-1087 https://doi.org/10.1080/02652030600986032
  21. Kim KH, Lee SA, Yook HS. 2007. Effects of gamma irradiation on physicohemical properties of red beet and stability of betalin in the red beet (Beta vulgaris L.). J Korean Soc Food Sci Nutr 36: 453-457 https://doi.org/10.3746/jkfn.2007.36.4.453
  22. Hong SS. 2000. The drying characteristics of food stuff (beet) by freeze drying. J Ind Sci Tech Institute 14: 49-58
  23. Denizot F, Lang R. 1986. Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods 89: 271-277 https://doi.org/10.1016/0022-1759(86)90368-6
  24. LeBel CP, Ischiropoulos H, Bondy SC. 1992. Evaluation of the probe 2',7'-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 5: 227-231 https://doi.org/10.1021/tx00026a012
  25. Tsuchiya M, Suematsu M, Suzuki H. 1994. In vivo visualization of oxygen radical-dependent photoemission. Methods Enzymol 233: 128-140 https://doi.org/10.1016/S0076-6879(94)33015-8
  26. Kada T, Inoue T, Morita K, Namiki M. 1986. Dietary desmutagens. Prog Clin Biol Res 206: 245-253
  27. Bokov A, Chaudhuri A, Richardson A. 2004. The role of oxidative damage and stress in aging. Mech Ageing Dev 125: 811-826 https://doi.org/10.1016/j.mad.2004.07.009
  28. Cavalca V, Cighetti G, Bamonti F, Loaldi A, Bortone L, Novembrino N, De Franceschi M, Belardinelli R, Guazzi MD. 2001. Oxidative stress and homocysteine in coronary artery disease. Clin Chem 47: 887-892
  29. Fenster CP, Weinsier RL, Darley-Usmar VM, Patel RP. 2002. Obesity, aerobic exercise, and vascular disease: the role of oxidant stress. Obes Res 10: 964-968 https://doi.org/10.1038/oby.2002.131
  30. Zielinska-Przyjemska M, Olejnik A, Dobrowolska-Zachwieja A, Grajek W. 2009. In vitro effects of beetroot juice and chips on oxidative metabolism and apoptosis in neutrophils from obese individuals. Phytother Res 23: 49-55 https://doi.org/10.1002/ptr.2535
  31. Kahkonen MP, Hopia AI, Vuorela HJ, Pihlaja K, Kujala TS, Heinonen M. 1999. Antioxidant activity of plant extracts containing phenolic compounds. J Agric Food Chem 47: 3954-3962 https://doi.org/10.1021/jf990146l
  32. Lee YA, Kim HY, Cho EJ. 2005. Comparison of methanol extracts from vegetables on antioxidant effect under in vitro and cell system. J Korean Soc Food Sci Nutr 34: 1151-1156 https://doi.org/10.3746/jkfn.2005.34.8.1151
  33. Son MJ, Son SJ, Lee SP. 2008. Physicochemical properties of carrot juice containing Phellinus linteus extract and beet extract fermented by Leuconostoc mesenteroides SM. J Korean Soc Food Sci Nutr 37: 798-804 https://doi.org/10.3746/jkfn.2008.37.6.798
  34. Oh SI, Lee MS. 2003. Screening for antioxidative and antimutagenic capacities in 7 common vegetables taken by Korean. J Korean Soc Food Sci Nutr 32: 1344-1350 https://doi.org/10.3746/jkfn.2003.32.8.1344
  35. Kuhn MA. 2003. Oxygen free radicals and antioxidants: an overview of how antioxidants protect the body from disease. Am J Nurs 103: 58-62 https://doi.org/10.1097/00000446-200304000-00022

Cited by

  1. Antioxidant and Antibacterial Activity of Extracts from Brassica juncea czerniak et coss., Celosia cristata L., and Beta vulgaris L. vol.27, pp.6, 2012, https://doi.org/10.7318/KJFC/2012.27.6.719
  2. Quality Characteristics of Bread added with Beet Powder vol.26, pp.1, 2016, https://doi.org/10.17495/easdl.2016.2.26.1.55
  3. Quality Characteristics of Cookies Containing Beetroot Powder vol.30, pp.4, 2015, https://doi.org/10.7318/KJFC/2015.30.4.457
  4. Antioxidant and Antiobesity Activities of Various Color Resources Extracted from Natural Plants vol.44, pp.2, 2015, https://doi.org/10.3746/jkfn.2015.44.2.165
  5. Quality Characteristics of Noodles Supplemented with Dried Beta vulgaris L. Root Powder vol.44, pp.2, 2015, https://doi.org/10.3746/jkfn.2015.44.2.302
  6. Quality Characteristics of Sulgidduk with Beet Leaf Powder vol.30, pp.2, 2014, https://doi.org/10.9724/kfcs.2014.30.2.119
  7. Optimal Conditions for Extraction of Anthocyan from Celosia cristata L., Brassica juncea czerniak et coss, Beta vulgaris L. for manufacture of Color Dongchimi vol.27, pp.6, 2012, https://doi.org/10.7318/KJFC/2012.27.6.686
  8. Effect of Red Beet on Quality and Color Stability of Low-fat Sausages during Refrigerated Storage vol.30, pp.6, 2010, https://doi.org/10.5851/kosfa.2010.30.6.1014
  9. 레드 비트 뿌리 추출물의 항산화 및 항염증 효과 vol.24, pp.3, 2009, https://doi.org/10.11002/kjfp.2017.24.3.413
  10. 비트분말을 첨가한 절편의 품질특성 vol.32, pp.6, 2009, https://doi.org/10.7318/kjfc/2017.32.6.576
  11. RAW 264.7 세포에서 레드비트의 항산화 및 항염증 등의 생리활성 연구 vol.38, pp.1, 2021, https://doi.org/10.12925/jkocs.2021.38.1.309
  12. Comparison of the Antioxidant Properties and Phenolic Compositions of Different Varieties of Beets (Beta vulgaris L.) Cultivated in Korea vol.50, pp.10, 2009, https://doi.org/10.3746/jkfn.2021.50.10.1058