DOI QR코드

DOI QR Code

Low k Materials for High Frequency High Integration Modules

  • Na, Yoon-Soo (Department of Materials Science and Engineering, Yonsei University) ;
  • Lim, Tae-Young (Korea Institute of Ceramic Engineering & Technology) ;
  • Kim, Jin-Ho (Korea Institute of Ceramic Engineering & Technology) ;
  • Shin, Hyo-Soon (Korea Institute of Ceramic Engineering & Technology) ;
  • Hwang, Jong-Hee (Korea Institute of Ceramic Engineering & Technology) ;
  • Cho, Yong-Soo (Department of Materials Science and Engineering, Yonsei University)
  • Published : 2009.07.31

Abstract

Glass systems based on Ca, Sr, Ba, and Zn modified alumino-boro silicates were investigated in order to improve the dielectric and mechanical properties of a typical LTCC (low temperature co-fired ceramic) which was developed for high frequency highly-integrated modules. The glass was prepared by a typical melting procedure and then mixed with cordierite fillers to fabricate glass/ceramic composite-type LTCC materials. The amount of cordierite filler was fixed at 50 volumetric%. For an optimal glass composition of 7.5% CaO, 7.5% BaO, 5% ZnO, 10% $Al_2O_3$, 30% $B_2O_3$, and 40% $SiO_2$ in mole ratio, the resultant LTCC composite showed a dielectric constant of 5.8 and a dielectric loss ($tan{\delta}$) of 0.0009 after firing at $900^{\circ}C$. An average bending strength of 160MPa was obtained for the optimal composition.

Keywords

References

  1. Y. S. Cho and K. H. Yoon, Handbook of Advanced Electronic and Photonic Materials and Devices, pp. 175-99, Academic Press, San Diego, 2001
  2. Y, Imanaka, 'Multilayered Low Temperature Co-fired Ceramics (LTCC) Technology,' pp. 1-5, Springer, U.S.A., 2005
  3. Y. S. Cho, K. W. Hang, C. B. Wang, K. E. Souders, D. Ajumdar, D. Amey, and C. R. Needes, 'High k LTCC System for High Frequency Applications,' pp. 195-99, in Proceedings of the IMAPS Ceramic Interconnect Technology Conference, IMAPS., U.S.A., 2003
  4. B. Schwartz, 'Microelectronics Packaging: II,' Am. Ceram. Bull., 63 [4] 577-81 (1984)
  5. K. Hano, H. Kohriyama, and K. I. Sawamoto, 'A Direct-coupled 1/4${\lambda}$ Coaxial Resonator Band-pass Filter for Mobile Communications,' IEEE Trans. Microwave Theory Tech., MTT-34 972-76 (1986)
  6. H. Mandai, K. Sugo, and K. Tsukamoto, A Low Temperature Cofired Multillayer Ceramic Substrate Containing Copper Conductors, pp. 61-4, Proc. IMC, Kobe, 1986
  7. H. Mandai, et al., 'Ceramics. Science & Technology, Congress Proceedings,' Proc., 83-6 (1990)
  8. H. Mandai and S. Okubo, 'Low Temperature Fireable Dielectric Ceramics Material,' Ceramic Transactions, 32 91-101 (1992)
  9. N. Mori, Y. Sugimoto, J. Harada, and Y. Higuchi, 'Dielectric Properties of New Glass-ceramics for LTCC Applied to Microwave or Millimeter-wave Frequencies,' J. Euro. Ceram. Soc., 26 1925-28 (2006) https://doi.org/10.1016/j.jeurceramsoc.2005.09.023
  10. A. Faeghi-Nia, V. K. Marghussian, and E. Taheri-Nassaj, 'Effect of $B_2O_3$ on Crystallization Behavior and Microstructure of MgO-$SiO_2-Al_2O_3-K_2O$-F Glass-Ceramics,' Ceram. Int., 33 773-78 (2007) https://doi.org/10.1016/j.ceramint.2006.01.022
  11. C. L. Lo, J. G. Duh, B. S. Chiou and W. H Lee, 'Low-Temperature Sintering and Microwave Dielectric Properties of Anorthite-Based Glass-Ceramic,' J. Am. Ceram. Soc., 85 [9] 2230-35 (2002) https://doi.org/10.1111/j.1151-2916.2002.tb00440.x
  12. E. Demirkesen and E. Maytalman, 'Effect of $Al_2O_3$ Additions on the Crystallization Behavior and Bending Strength of a $Li_2O$-ZnO-$SiO_2$ Glass-Ceramic,' Ceram. Int., 2799 (2001) https://doi.org/10.1016/S0272-8842(00)00048-1
  13. M. Kamitakahara, C. Ohtsuki, H. Inada, M. Tanihara, and T. Miyazaki, Effect of ZnO Addition on Bioactive CaO-$SiO_2-P_2O_5-CaF_2$ Glass-Ceramic Containing Apatite and Wollastonite, Acta Biomaterialia, 2 467 (2006) https://doi.org/10.1016/j.actbio.2006.03.001
  14. M. B. Volf, Handbook of Glass science and technology, pp. 269-71, Elsevier Science Press, U.S.A., 1984
  15. J. H. Hwang, T. Y. Lim, C. Y. Kim, S. M. Han, J. S Park, and T. Masaki, 'Effect of RO Components on Some Properties of Pb free Glass Frit for PDP,' Mater. Sci. Forum., 486-487 293-96 (2005) https://doi.org/10.4028/www.scientific.net/MSF.486-487.293
  16. C. C. Chiang, S. F. Wang, Y. R. Wang, and Y. F. Hsu, 'Characterizations of CaO-$B_2O_3-SiO_2$ Glass-ceramics: Thermal and Electrical Properties,' J. Alloys Compd., 461 [1-2] 612-16 (2008) https://doi.org/10.1016/j.jallcom.2007.07.073
  17. W. B. Lim, Y. S. Cho, Y. J. Seo, and J. G. Park, 'Shrinkage Behavior of LTCC Hetero-laminates,' J. Euro. Ceram. Soc., 29 [4] 711-18 (2008) https://doi.org/10.1016/j.jeurceramsoc.2008.07.058
  18. C. C. Chiang, S. F. Wang, Y. R. Wang, and W.C.J. Wei, 'Densification and Microwave Dielectric Properties of CaO-$B_2O_3-SiO_2$ System Glass-ceramics,' Ceram. Int., 34 599-604 (2008) https://doi.org/10.1016/j.ceramint.2006.12.008
  19. F. Scholze, Glass, Nature, Structure, and Properties, pp.106-11, 3rd Ed., Springer, New York, 1991