Theoretical gravity studies on roles of convection in crystal growth of $Hg_2Cl_2$-Xe by physical vapor transport under normal and high gravity environments

  • Kim, Geug-Tae (Department of Nano-Bio Chemical Engineering, Hannam University) ;
  • Kwon, Moo-Hyun (Department of Applied Chemistry, Woosuk University)
  • Published : 2009.06.30

Abstract

Particular interest in the role of convection in vapor crystal growth has arisen since some single crystals under high gravity acceleration of $10g_0$ appear considerably larger than those under normal gravity acceleration ($1g_0$). For both ${\Delta}T=60\;K$ and 90 K, the mass flux increases by a factor of 3 with increasing the gravity acceleration from $1g_0$ up to $10g_0$. On the other hand, for ${\Delta}T=30\;K$, the flux is increased by a factor of 1.36 for the range of $1g_0{\leq}g{\leq}10g_0$. The maximum growth rates for $1g_0$, $4g_0$, $10g_0$ appear approximately in the neighborhood of y = 0.5, and the growth rates shows asymmetrical patterns, which indicate the occurrence of either one single or more than one convective cell. The maximum growth rate for $10g_0$ is nearly greater than that for $1g_0$ by a factor of 2.0 at $P_B=20\;Torr$. For three different gravity levels of $1g_0$, $4g_0$ and $10g_0$, the maximum growth rates are greater than the minimum rates by a factor of nearly 3.0, based on $P_B=20\;Torr$. The mass flux increases with increasing the gravity acceleration, for $1g_0{\leq}g_y{\leq}10g_0$, and decreases with increasing the partial pressure of component B, xenon (Xe), $P_B$. The $|U|_{max}$ is directly proportional to the gravity acceleration for $20\;Torr{\leq}P_B{\leq}300\;Torr$. As the partial pressure of $P_B$ (Torr) decreases from 300 Torr to 20 Torr, the slopes of the $|U|_{max}s$ versus the gravity accelerations increase from 0.1 sec to 0.17 sec. The mass flux of $Hg_2Cl_2$ is exponentially decayed with increasing the partial pressure of component B, $P_B$ (Torr) from 20 Torr up to 300 Torr.

Keywords

References

  1. D.W. Greenwell, B.L. Markham and F. Rosenberger, "Numerical modeling of diffusive physical vapor transport in cylindrical ampoules", J. Crystal Growth 51 (1981) 413 https://doi.org/10.1016/0022-0248(81)90418-8
  2. B.L. Markham, D.W. Greenwell and F. Rosenberger, "Numerical modeling of diffusive-convective physical vapor transport in cylindrical vertical ampoules", J. Crystal Growth 51 (1981) 426 https://doi.org/10.1016/0022-0248(81)90419-X
  3. B.S. Jhaveri and F. Rosenberger, "Expansive convection in vapor transport across horizontal enclosures", J. Crystal Growth 57 (1982) 57 https://doi.org/10.1016/0022-0248(82)90248-2
  4. B.L. Markham and F. Rosenberger, "Diffusive-convective vapor transport across horizontal and inclined rectangular enclosures", J. Crystal Growth 67 (1984) 241 https://doi.org/10.1016/0022-0248(84)90184-2
  5. G.P. Extremet, P. Bontoux and B. Roux, "Effect of temperature gradient locally applied on a long horizontal cavity", Int’l. J. Heat and Fluid Flow 8 (1987) 26 https://doi.org/10.1016/0142-727X(87)90047-6
  6. A. Nadarajah, F. Rosenberger and J. Alexander, "Effects of buoyancy-driven flow and thermal boundary conditions on physical vapor transport", J. Crystal Growth 118 (1992) 49 https://doi.org/10.1016/0022-0248(92)90048-N
  7. H. Zhou, A. Zebib, S. Trivedi and W.M.B. Duval, "Physical vapor transport of zinc-telluride by dissociative sublimation", J. Crystal Growth 167 (1996) 534 https://doi.org/10.1016/0022-0248(96)00305-3
  8. F. Rosenberger, J. Ouazzani, I. Viohl and N. Buchan, "Physical vapor transport revised", J. Crystal Growth 171 (1997) 270 https://doi.org/10.1016/S0022-0248(96)00717-8
  9. N. Ramachandran, C.H. Su and S.L. Lehoczky, "Modeling studies of PVT growth of ZnSe: current status and future course", J. Crystal Growth 208 (2000) 269 https://doi.org/10.1016/S0022-0248(99)00512-6
  10. C. Mennetrier and W.M.B. Duval, "Thermal-solutal convection with conduction effects inside a rectangular enclosure", NASA Technical Memorandum 105371 (1991)
  11. C. Mennetrier, W.M.B. Duval and N.B. Singh, "Physical vapor transport of mercurous chloride under a nonlinear thermal profile", NASA Technical Memorandum 105920 (1992)
  12. Jing Lu, Zi-Bing Zhang and Qi-Sheng Chen, "Numerical simulation of the flow field and concentration distribution in the bulk growth of silicon carbide crystals", J. Crystal Growth 292 (2006) 519 https://doi.org/10.1016/j.jcrysgro.2006.04.067
  13. H. Wiedemeier and W. Palosz, "Vapor transport and crystal growth of GeSe under normal and high acceleration", J. Crystal Growth 119 (1992) 79 https://doi.org/10.1016/0022-0248(92)90207-Y
  14. Edward R. Letts, James S. Speck and Shuji Nakamura, "Effect of indium on the physical vapor transport growth of AlN", J. Crystal Growth 311 (2009) 1060 https://doi.org/10.1016/j.jcrysgro.2008.12.030
  15. D. Zhuang, Z.G. Herro, R. Schlesser and Z. Sitar, "Seeded growth of AlN single crystals by physical vapor transport", J. Crystal Growth 287 (2006) 372 https://doi.org/10.1016/j.jcrysgro.2005.11.047
  16. J.-S. Kim, Sudhir B. Trivedi, Jolanta Soos, Neelam Gupta and Witold Palosz, "Growth of $Hg_2Cl_2$ and $Hg_2Br_2$ single crystals by physical vapor transport", J. Crystal Growth 310 (2008) 2457 https://doi.org/10.1016/j.jcrysgro.2007.12.067
  17. N.B. Singh, W.M.B. Duval, A.S. W. Thomas, M.E. Glicksman, J.D. Adam, H. Zhang, J.C. Goldmbeck, C. Watson, R. Naumman, A.E. Nelson, C. Cacioppo, J. Griffin, M. Jugrav, T. Rolin, J. Seaquist and N. Daniel, "Microgravity experiment to understand the effect of convection on PVT crystal growth", Adv. Space Res. 32 (2003) 211 https://doi.org/10.1016/S0273-1177(03)90253-5
  18. C.-H. Su, S. Feth and S.L. Lehoczky, "In situ partial pressure measurements and visual observation during crystal growth of ZnSe by seeded physical vapor transport", J. Crystal Growth 209 (2000) 687 https://doi.org/10.1016/S0022-0248(99)00631-4
  19. C.-H. Su, M.A. George, W. Palosz, S. Feth and S.L. Lehoczky, "Contactless growth of ZnSe single crystals by physical vapor transport", J. Crystal Growth 213 (2000) 267 https://doi.org/10.1016/S0022-0248(00)00385-7
  20. W. Palosz, "Physical vapor transport of lead telluride", J. Crystal Growth 216 (2000) 273 https://doi.org/10.1016/S0022-0248(00)00400-0
  21. W.M.B. Duval, "Convection in the physical vapor transport process--I: Thermal convection", J. Chem. Vapor Deposition 2 (1994a) 188
  22. W.M.B. Duval, "Convection in the physical vapor transport process--II: Thermosolutal convection", J. Chem. Vapor Deposition 2 (1994b) 282
  23. W.M.B. Duval, "Transition to chaos in the physical vapor transport process--I: fluid mechanics problem phenomena in microgravity", Fluids Eng. Div. ASME 175 (1993) 51
  24. W.M.B. Duval, N.E. Glicksman and B. Singh, "Physical vapor transport of mercurous chloride crystals; design of a microgravity experiment", J. Crystal Growth 174 (1997) 120 https://doi.org/10.1016/S0022-0248(96)01088-3
  25. P.A. Tebbe, S.K. Loyalka and W.M.B. Duval, "Finite element modeling of asymmetric and transient flow flieds during physical vapor transport", Finite Elements in Analysis and Design 40 (2004) 1499 https://doi.org/10.1016/j.finel.2003.09.003
  26. G.T. Kim, W.M.B. Duval, N.B. Singh and M.E. Glicksman, "Thermal convective effects on physcial vapor transport growth of mercurous chloride crystals (Hg2C12) for axisymmetric 2-D cylindrical enclosure", Modelling. Simul. Mater. Sci. Eng. 3 (1995) 331 https://doi.org/10.1088/0965-0393/3/3/004
  27. G.T. Kim, W.M.B. Duval and M.E. Glicksman "Thermal convection in physical vapour transport of mercurous chloride (Hg2Cl2) for rectangular enclosures", Modelling. Simul. Mater. Sci. Eng. 5 (1997) 289 https://doi.org/10.1088/0965-0393/5/3/007
  28. G.T. Kim, W.M.B. Duval and M.E. Glicksman "Effects of asymmetric temperature profiles on thermal convection during physical vapor transport of $Hg_2Cl_2$", Chem. Eng. Comm. 162 (1997) 45 https://doi.org/10.1080/00986449708936631
  29. J.-G. Choi, K.-H. Lee, M.-H. Kwon and G.-T. Kim, "Effect of accelerational perturbations on physical vapor transport crystal growth under microgravity environments", J. Korean Crystal Growth and Crystal Technology 16 (2006) 203
  30. G.-T. Kim and K.-H. Lee, "Parametric studies on convection during the physical vapor transport of mercurous chloride ($Hg_2Cl_2$)", J. Korean Crystal Growth and Crystal Technology 14 (2004) 281
  31. G.T. Kim, "Convective-diffusive transport in mercurous chloride ($Hg_2Cl_2$) crystal growth", J. Ceramic Processing Research 6 (2005) 110
  32. J.-G. Choi, K.-H. Lee and G.-T. Kim, "effects of inert gas (Ne) on thermal convection of mercurous chloride system of $Hg_2Cl_2$ and Ne during physical vapor transport", J. Korean Crystal Growth and Crystal Technology 18 (2008) 225
  33. J.-G. Choi, K.-H. Lee and G.-T. Kim, "Generic studies on thermo-solutal convection of mercurous chloride system of Hg2Cl2 and Ne during physical vapor transport", J. Korean Crystal Growth and Crystal Technology 1 (2009) 39
  34. N.B. Singh, R. Mazelsky and M.E. Glicksman, "Evaluation of transport conditions during PVT: mercurous chloride system", PhysicoChemical Hydrodynamics 11 (1989) 41
  35. N.B. Singh, M. Gottlieb, G.B. Brandt, A.M. Stewart, R. Mazelsky and M.E. Glicksman, "Growth and characterization of mercurous halide crystals:mercurous bromide system", J. Crystal Growth 137 (1994) 155 https://doi.org/10.1016/0022-0248(94)91265-3
  36. N.B. Singh, R.H. Hopkins, R. Mazelsky and J.J. Conroy, "Purification and growth of mercurous chloride single crystals", J. Crystal Growth 75 (1970) 173 https://doi.org/10.1016/0022-0248(86)90238-1
  37. S.J. Yosim and S.W. Mayer, "The mercury-mercuric chloride system", J. Phys. Chem. 60 (1960) 909 https://doi.org/10.1021/j100836a023
  38. F. Rosenberger and G. Müller, "Interfacial transport in crystal growth, a parameter comparison of convective effects", J. Crystal Growth 65 (1983) 91 https://doi.org/10.1016/0022-0248(83)90043-X
  39. S.V. Patankar, "Numerical heat transfer and fluid flow" (Hemisphere Publishing Corp., Washington D.C., 1980)