DOI QR코드

DOI QR Code

A Technique of Segment Expression and RNA Interference (SERI) Reveals a Specific Physiological Function of a Cysteine-Rich Protein Gene Encoded in Cotesia plutellae Bracovirus

  • Barandoc, Karen (Department of Bioresource Sciences, Andong National University) ;
  • Kim, Yong-Gyun (Department of Bioresource Sciences, Andong National University)
  • Published : 2009.06.30

Abstract

As a provirus, polydnavirus has a segmented DNA genome on chromosome(s) of host wasp. It contains several genes in each segment that presumably play critical roles in regulating physiological processes of target insect parasitized by the wasp. A cysteine-rich protein 1 (CRP1) is present in the polydnavirus Cotesia plutellae bracovirus (CpBV) genome, but its expression and physiological function in Plutella xylostella parasitized by the viral host C. plutellae is not known. This CpBV-CRP1 encoding 189 amino acids with a putative signal peptide (20 residues) was persistently expressed in parasitized P. xylostella with gradual decrease at the late parasitization period. Expression of CpBV-CRP1 was tissue-specific in the fat body/epidermis and hemocyte, but not in the gut. Its physiological function was analyzed by inducing transient expression of a CpBV segment containing CpBV-CRP1 and its promoter, which caused significant reduction in hemocyte -spreading and delayed larval development. When the treated larvae were co-injected with double-stranded RNA of CpBV-CRP1, the expression of CpBV-CRP1 disappeared, whereas other genes encoded in the CpBV segment was expressed. These co-injected larvae significantly recovered the hemocyte-spreading capacity and larval development rate. This study reports that CpBV-CRP1 is expressed in P. xylostella parasitized by C. plutellae and its physiological function is to alter the host immune and developmental processes.

Keywords

References

  1. Bae, S. and Y. Kim. 2004. Host physiological changes due to parasitism of a braconid wasp, Cotesia plutellae, on diamondback moth, Plutella xylostella. Comp. Biochem. Physiol. 138A: 39-44
  2. Basio, N. A. and Y. Kim. 2006. Additive effect of teratocytes and calyx fluid from Cotesia plutellae on immunosuppression of Plutella xylostella. Physiol. Entomol. 31: 341-347 https://doi.org/10.1111/j.1365-3032.2006.00524.x
  3. Choi, J. Y., J. Y. Roh, J. W. Kang, H. J. Shim, S. D. Woo, B. R. Jin, M. S. Li, and Y. H. Je. 2005. Genomic segments cloning and analysis of Cotesia plutellae polydnavirus using plasmid capture system. Biochem. Biophys. Res. Commun. 332: 487-493 https://doi.org/10.1016/j.bbrc.2005.04.146
  4. Cui, L., A. Soldevila, and B. A. Webb. 1997. Expression and hemocyte-targeting of a Campoletis sonorensis polydnavirus cysteine-rich gene in Heliothis virescens larvae. Arch. Insect Biochem. Physiol. 36: 251-271 https://doi.org/10.1002/(SICI)1520-6327(1997)36:4<251::AID-ARCH2>3.0.CO;2-V
  5. Dupuy, C., E. Huguet, and J. D. Drezen. 2006. Unfolding the evolutionary story of polydnaviruses. Virus Res. 117: 81-89 https://doi.org/10.1016/j.virusres.2006.01.001
  6. Espagne, E., D. Catherine, E. Huguet, L. Cattolico, B. Provost, N. Martins, M. Poirie, G. Periquet, and J. M. Drezen. 2004. Genome sequence of a polydnavirus: Insights into symbiotic virus evolution. Science 306: 286-289 https://doi.org/10.1126/science.1103066
  7. Fath-Goodin, A., T. A. Gill, and B. A. Webb. 2006. Effect of Campoletis sonorensis ichnovirus cys-motif proteins on Heliothis virescens larval development. J. Insect Physiol. 52:576-585 https://doi.org/10.1016/j.jinsphys.2006.02.005
  8. Gad, W. and Y. Kim. 2002. A viral histone H4 encoded by Cotesia plutellae bracovirus inhibits haemocyte-spreading behaviour of the diamondback moth, Plutella xylostella. J. Gen. Virol. 89: 931-938 https://doi.org/10.1099/vir.0.83585-0
  9. Ibrahim, A. M. A., J. Y Choi, Y. H Je, and Y. Kim. 2005. Structure and expression profile of two putative Cotesia plutellae bracovirus genes (CpBV-H4 and CpBV-E94${\alpha}$) in parasitized P. xylostella. J. Asia-Pac. Entomol. 8: 359-366 https://doi.org/10.1016/S1226-8615(08)60258-7
  10. Ibrahim, I. M. A. and Y. Kim. 2007. Protein tyrosine phosphatases of Cotesia plutellae bracovirus inhibit insect cellular immune responses. Naturwissenchaften 95: 25-32 https://doi.org/10.1007/s00114-007-0290-7
  11. Ibrahim, A. M. A. and Y. Kim. 2008. Protein tyrosine phosphatases of Cotesia plutellae bracovirus inhibit insect cellular immune responses. Naturwissenschaften 95: 25-32 https://doi.org/10.1007/s00114-007-0290-7
  12. Kim, Y. 2005. Identification of host translation inhibitory factor of Campoletis sonorensis ichnovirus on the tobacco budworm, Heliothis virescens. Arch. Insect Biochem. Physiol. 59: 230-244 https://doi.org/10.1002/arch.20074
  13. Kim, Y. 2006. Polydnavirus and its novel application to insect pest control. Kor. J. Appl. Entomol. 45: 241-259
  14. Kim, Y., N. A. Basio, A. M. A. Ibrahim, and S. Bae. 2006. Gene structure of Cotesia plutellae bracovirus (CpBV)-IkB and its expression pattern in the parasitized diamondback moth, Plutella xylostella. Kor. J. Appl. Entomol. 45: 15-24
  15. Kim, Y., J. Y. Choi, and Y. H. Je. 2007. Cotesia plutellae bracovirus genome and its function in altering insect physiology. J. Asia-Pac. Entomol. 10: 181-191 https://doi.org/10.1016/S1226-8615(08)60351-9
  16. Kwon, B. and Y. Kim. 2008. Transient expression of an EP1-like gene encoded in Cotesia plutellae bracovirus suppresses the hemocyte population in the diamondback moth, Plutella xylostella. Dev. Comp. Immunol. 32: 932-942 https://doi.org/10.1016/j.dci.2008.01.005
  17. Li, X. and B. A Webb. 1994. Apparent functional role for a cysteine-rich polydnavirus protein in suppression of the insect cellular immune response. J. Virol. 68: 7482-7489
  18. Nalini, M., J. Y. Choi, Y. H. Je, I. Hwang, and Y. Kim. 2008. Immunoevasive property of a polydnaviral product, CpBVlectin, protects the parasitoid egg from hemocytic encapsulation of Plutella xylostella (Lepidoptera: Yponomeutidae). J. Insect Physiol. (In press.)
  19. Nalini, M. and Y. Kim. 2007. A putative protein inhibitory factor encoded in Cotesia plutellae bracovirus suppresses host hemocyte-spreading behavior. J. Insect Physiol. 53: 1283-1292 https://doi.org/10.1016/j.jinsphys.2007.07.004
  20. SAS Institute, Inc. 1989. SAS/STAT User's Guide, release 6.03 ed. SAS Institute, Cary, NC
  21. Tanaka, K., R. Lapointe, W. E. Barney, A. M. Makkay, D. Stoltz, M. Cusson, and B. A. Webb. 2007. Shared and speciesspecific features among ichnovirus genomes. Virology 363: 26-35 https://doi.org/10.1016/j.virol.2006.11.034
  22. Webb, B. A. 1998. Polydnavirus Biology, Genome Structure, and Evolution, pp. 105-139. In L. K. Miller and L. A. Ball (eds.), The Insect Viruses. Plenum, New York
  23. Webb, B. A. and M. R. Strand. 2005. The Biology and Genomics of Polydnaviruses, pp. 260-323. In L. I. Gilbert, K. Iatrou, and S. S. Gill (eds.), Comprehensive Molecular Insect Science, Vol. 5. Elsevier Press, San Diego
  24. Webb, B. A., M. R. Strand, S. E. Dickey, M. H. Beck, R. S. Hilgarth, W. E. Barney, et al. 2006. Polydnavirus genomes reflect their dual roles as mutualists and pathogens. Virology 347: 160-174 https://doi.org/10.1016/j.virol.2005.11.010

Cited by

  1. A SERI technique reveals an immunosuppressive activity of a serine-rich protein encoded in Cotesia plutellae bracovirus vol.43, pp.4, 2009, https://doi.org/10.5483/bmbrep.2010.43.4.279
  2. Translation inhibitory factors encoded in Cotesia plutellae bracovirus require the 52-UTR of a host mRNA target vol.156, pp.2, 2009, https://doi.org/10.1016/j.cbpb.2010.03.001
  3. Transient expression of specific Cotesia plutellae bracoviral segments induces prolonged larval development of the diamondback moth, Plutella xylostella vol.56, pp.6, 2009, https://doi.org/10.1016/j.jinsphys.2010.01.013
  4. Transient transcription of a putative RNase containing BEN domain encoded in Cotesia plutellae bracovirus induces an immunosuppression of the diamondback moth, Plutella xylostella vol.105, pp.2, 2009, https://doi.org/10.1016/j.jip.2010.06.003
  5. CpBV-ELP1 발현 재조합 벡큘로바이러스의 대량 증식과 파밤나방 방제 기술 vol.19, pp.3, 2009, https://doi.org/10.7585/kjps.2015.19.3.279