DOI QR코드

DOI QR Code

베이지안 기법을 이용한 해양 RC 구조물의 염해에 대한 LCC 모델 개발

Development of a Successive LCC Model for Marine RC Structures Exposed to Chloride Attack on the Basis of Bayesian Approach

  • Jung, Hyun-Jun (Korea Infrastructure Safety and Technology Corporation) ;
  • Park, Heung-Min (Infra Asset Management Corporation) ;
  • Kong, Jung-Sik (Dept. of Civil & Environmental and Architectural Engineering, Korea University) ;
  • Zi, Goang-Seup (Dept. of Civil & Environmental and Architectural Engineering, Korea University) ;
  • Kim, Gyu-Seon (Korea Infrastructure Safety and Technology Corporation)
  • 발행 : 2009.06.30

초록

본 논문은 해양 RC 구조물의 새로운 생애주기비용 (LCC) 평가 모델을 제시한다. 이 모델 방법은, 기존의 LCC 평가 모델과 달리, 구조물을 설계하는 동안 추가적인 염화물 침투의 새로운 데이터가 있을 때 계속적으로 생애주기비용을 업데이트 할 수 있다. 이는 베이지안 기법을 통하여 이루어진다. 일반적인 중요 구조물에서는 각 부재에 대한 다양한 모니터링 시스템을 이용하기 때문에 어려움 없이 베이지안 기법에 필요한 데이터를 얻을 수 있다. 베이지안 기법을 사용하여 구조물의 생애유지 관리비용을 높은 정밀도로 예측할 수 있다.

A new life-cycle cost (LCC) evaluation scheme for marine reinforced concrete structures is proposed. In this method, unlike the conventional life-cycle cost evaluation performed during the design process, the life-cycle cost is updated successively whenever new information of the chloride penetration is available. This updating is performed based on the Bayesian approach. For important structures, information required for this new method can be obtained without any difficulties because it is a common element of various types of monitoring systems. Using the new method, the life-cycle maintenance cost of structures can be estimated with a good precision.

키워드

참고문헌

  1. Boulfiza, M., Sakai, K., and Banthia, N., et al., “Prediction of Chloride Ions Ingress in Uncracked and Cracked Concrete,” ACI Materials Journal, Vol. 100, No. 1, 2003, pp. 38-48
  2. 정현준, 지광습, 공정식, 강진구, “베이지안 기법을 이용한 염해 콘크리트구조물의 내구성 예측,” 콘크리트학회 논문집, 20권, 1호, 2008, pp. 77-88 https://doi.org/10.4334/JKCI.2008.20.1.077
  3. Crank, J., The Mathematics of Diffusion, Oxford University Press, 1975, pp. 48-73
  4. 김지상, 정상화, 김주형, 이광명, 배수호, “염해를 받는 콘크리트 구조물의 확률론적 내구성 해석,” 콘크리트학회 논문집, 18권, 2호, 2006, pp. 239-248 https://doi.org/10.4334/JKCI.2006.18.2.239
  5. 윤인석, “시멘트 수화 특성 및 탄산화를 고려한 콘크리트의 임계염소이온량에 대한 해석 기법,” 콘크리트학회논문집, 19권, 3호, 2007, pp. 367-375 https://doi.org/10.4334/JKCI.2007.19.3.367
  6. Bazant, Z. P. and Kim, J. K., “Segmental Box Girder-Deflection Probability and Bayesian Updating,” Journal of Structural Engineering, Vol. 115, No. 10, 1989, pp. 2528-2547 https://doi.org/10.1061/(ASCE)0733-9445(1989)115:10(2528)
  7. Ang, A. H. S. and Tang, W. H., “Probability Concepts in Engineering Planning and Design,” Basic Principles. John Wiley and Sons, Vol. 1, 1975, pp. 329-359
  8. Mckay, M. D., Beckman, R. T., and Conover, W. J., “A Comparion of Three Methods for Selecting Values of Input Variables in the Analysis Output from a Computer Code,” Technometrics, Vol. 21, 1979, pp. 239-245 https://doi.org/10.2307/1268522
  9. Costa, A. and Appleton, J., “Chloride Penetration into Concrete in Marine Environment-Part I: Main Parameters Affecting Chloride Penetration,” Materials and Structures, Vol. 32, No. 218, 1999, pp. 252-259 https://doi.org/10.1007/BF02479594
  10. Costa, A. and Appleton, J., “Chloride Penetration into Concrete in Marine Environment-Part II: Prediction of Long Term Chloride Penetration,” Materials and Structures, Vol. 32, No. 219, 1999, pp. 354-359 https://doi.org/10.1007/BF02479627
  11. ENV 1992-1-1 : Eurocode 2, Design of Concrete Structures, Part 1-1 : General Rules and Rules for Buildings, 2004, pp. 49-52
  12. 한국콘크리트학회, 콘크리트구조설계기준, 한국콘크리트학회, 2004, 300 pp. 요