International Journal of KIMICS, Vol. 7, No. 2, June 2009

199

Predictive Memory Allocation over Skewed Streams

Hong-Won Yun, Member, KIMICS

Abstract—Adaptive memory management is a
serious issue in data stream management. Data
stream differ from the traditional stored relational
model in several aspect such as the stream arrives
online, high wvolume in size, skewed data
distributions. Data skew is a common property of
massive data streams. We propose the predicted
allocation strategy, which uses predictive
processing to cope with time varying data skew.
This processing includes memory usage estimation
and indexing with timestamp. Our experimental
study shows that the predictive strategy reduces
both required memory space and latency time for
skewed data over varying time.

Index Terms—Data Stream Management System,
Adaptive Memory Management, Skewed Data
Streams, Continuous Querics.

I. INTRODUCTION

There are many stream-processing applications,
including financial record analysis, traffic data
monitoring, network monitoring, and sensor data
monitoring. For supporting continuous queries on
massive data streams with real time or almost real
time response, memory efficiency can be a serious
issue due to the large volume of data streams [1-3].

For applications monitoring and processing streams,
we consider in particular continuous queries, which
are queries that are issued once and the logically run
continuously over the data streams. Continuous
queries may be used to monitor network behavior and
trends in financial applications. The potential for high
data arrival rates and large data volumes make
memory and execution time performance of stream
query evaluation critical. Stream aggregation using
windowed aggregate queries is a common operation

Manuscript received May 20, 2009 ; Revised
June &, 2009. Hong-Won Yun is with the
Department of IT, Silla University, Busan, 617-
736, Korea (Tel: +82-51-999-5065, Fax: +82-51-
5657, Email: hwyun@silla.ac.kr)

on data streams [4].

In general, data streams are usually massive and
arrive with high speed, making either storing all the
historical data scanning it nearly not easy. Moreover,
stream data often evolve considerably over time. In
many applications, massive data streams often have
data distributions that result in a few dense aggregate
groups and a tail of many sparse aggregate groups
{3,5,6).

In this paper we focus on improving memory
efficiency with skewed data distributions, when they
vary over time. The paper is organized as follows. We
first introduce the background of data stream features
and stream semantics in Section II. Then in Section I
we present our strategy for efficient memory
allocation. Next we show performance evaluation of
our proposed strategy in Section IV. Finally we
conclude our study and discuss the related issues in
Section V.

II. RELATED WORK

A. Stream Properties

Traditional DBMS’s are not designed for rapid and
continuous loading of individual data items, and they
do not directly support the continuous queries that are
typical of data stream applications. Some of all of the
input data streams that are to be operated on are not
available for random access from disk or memory, but
rather arrive as one or more continuous data streams.
Data streams differ from the traditional stored relation
model in several ways [7]:

» The data streams arrive online continuously.

¢ The system can not control over the order which

data streams arrive to be processed.
« Data streams size is not bounded.

Operating in the data stream model does not
preclude the presence of some data in conventional
stored relations. Queries over continuous data streams
have much in common with queries in a traditional
DBMS. There are significant distinctions peculiar to
the data stream model. Continuous queries are
evaluated continuously as data streams continue to
arrive. For example, aggregation is the process of

200

Hong-Won Yun : Predictive Memory Allocation over Skewed Streams

computing statistical measure such as means and
variance that summarize the incoming stream. The
problem with aggregation is that it does not perform
well with highly fluctuating data distributions [7,8].

B. Streams Semantics

Data streams are generated at distributed sources,
continuous queries registered with the DSMS are
evaluated over the incoming stream data. In most of
stream applications, each data volume is varied over
time and massive data streams often have skewed data
distributions. Queries over data streams have much in
common, for example, stream aggregation using
windowed aggregate queries is a common operation
on data streams. The semantics for continuous queries
in a data stream system typically assumes timestamps
on data stream elements. Stream tuples are
timestamped on entry the DSMS using DSMS system
time [9-12].

Since data streams are potentially unbounded in size,
the amount of storage required to compute an exact
answer to a data stream query may also grow without
bound. Policies for memory efficiency can be a
significant issue due to the large volume of some data
streams. We formalize the problem and define the
probabilistic prediction method for memory efficiency.
We present a timestamp B-tree index with weight of
each data sources that process continuous queries over
data streams.

time stamp
- data volume
Sy Sy - 51.11:1000,..., S/.[n:700
—
Spe Sm - s8,.4=100,..., 5,.2,=500
time stamp) .
Sy Sy Sy e Sp

17 ty

Fig. 1 Skewed data distributions in data streams

L MEMORY USAGE PREDICTION
AND INDEXING

A. Memory Usage Estimation
Memory and execution performance of stream
query evaluation is critical in the potential for high

data arrival rates and huge data volumes with skewed
distributions. We need to estimate the memory usage
of each data sources over varying time.

Stream volume describes the mount of data in a
stream. We define data volume, V, as amount of data
per specific time interval, 7, in total windowing
attribute. The unit of time can be from second to year
denoted as ¢ and it is changed ¢, ... , t,. Let D = {d,,
..., d,} be an amount of data that appear in the total
target data sources. The amount of data in the specific
time interval is denoted as following:

V(D)= 3 V(d D)= ZV(Dp)y= Y. 2 ¥(d1) (D

deD 5eT dieDieT

Each data source has an amount of data v in a time

interval, T. It is denoted as w(d,T). Letd = {ey, ..., e}
be a set of data in the each data source. Thus,
v(d,Ty= Y v(eT) (2)
eked
The amount of data in all data sources is
(D, T)= >v{d,T) 3

vieV

We use W(d;) for N(d,T) and V(D) for ¥(D,T). An
amount of random data source, W(v;), within total
volume of data V' is estimated as:

W (vi) =V (di)/V (D) 4)

In the Fig. 2, 1, ... , {, present unit of time in the
time interval 7 and s, ..., s, mean data sources in the
observed system. Summation of the total amount of
data sources is divided by the total volume of data will
be 1 approximately.

Time

Sour i T
S W)
S | W

Fig. 2 Amount of each data sources within total data
volume. Each amount is represented weight

B. Indexing

By using probabilistic, the system copes with the
skewed data volumes over varying time. The
distribution is specified separately for the time
attribute and the data sources. The processor can use

international Journal of KIMICS, Vol. 7, No. 2, June 2009

201

indices to allocate the memory for each data sources
that are skewed on changing time. Prediction stream
indexing must properly handle probabilistic value
using historical data.

Fig. 2 shows one possible index for efficiently
identifying skewed data sources that are relevant to the
time. This indexing approach on (data source, time)
allows efficient look up of time steps in which the
node has specific probability.

head

[Jef T[]

(6 Lol le] o [T w Id

Data sources
N
i !

/

AN

PR
{

Fig. 5 Schematic showing the simulation setup

Table 1 Skewed Data Distribution (%)

Fig. 3 Timestamp B-tree index with weight of each
data source

time=t, memory
§7:0.2 T —___l
§5:0.1

Fig. 4 Predicted memory allocation at time 7

IV. PERFORMANCE STUDY

A. Experimental Environment

We tested the effectiveness and efficiency of
predicted memory allocation using probabilistic
method by conducting experiments. Our experiments
were conducted on an Intel Pentium 4 3GHz machine,
running Windows XP, with 1 GB main memory.

Fig. 5 illustrates the simplified schematic showing
the simulation setup for our experiments. To vary the
data skew, we distributed 1 percent, 3 percent, 35
percent, 7 percent, or 9 percent of the data. The data
set size is roughly 155 Megabytes. We used five data
sources to simulate, each data source generated

streams that had delta between 1 percent and 9 percent.

Data source s1 has small skewed data distribution and
then data source s5 has large skewed data distribution.
Each data source is assumed to have a unique source
identifier, and every incoming tuple has timestamp.

5,03 5,03 5,02 s1 s2_| s3 | s4 | s5
5102 5,02 5,0.1 = 2 3 4 5
550.1 §,0.15 = 6 9 12 15

55 0.1 10 15 20 25

14 21 28 35
18 27 36 45

Bh%h[&
O | ~J [N || »—
O |~3|w|w|—

1]

B. Results

We present the results of the two different
experiments. The experiments used rates and varied
the parameters according to Table 1. Fig. 6 and 7 show
the results of our experiments using the aggregate
function. In Fig. 6, the memory usage of Origin a little
increases and has maximizing memory usage as we
change the difference of skewed data from data source
1 to source 5. We see from Fig. 6 that the amount of
memory used by the Prediction method is greatly
reduced. The Prediction method can significantly
reduce memory usage. This is because the memory
usage prediction can be more adaptive for skewed data
streams over varying time than the original method for
memory allocation.

8 Crigin
Frediction

200

rAam ory hABD

5 a7 a8
as (%)

ast a3

Ciffera

2 [=

Fig. 6 Memory usage over data-skewed sources

As Fig. 7 shows, the Prediction outperforms the
Origin in all five differences that mean the percentage
of skewed data: the Prediction’s latency performance
is significant, confirming our expectations. Its latency

202

Hong-Won Yun : Predictive Memory Allocation over Skewed Streams

benefit increase mainly because the Prediction reduces
the waiting time to allocate memory for each data
sources on varying time. The incoming data streams
are largely skewed with individual sources, the latency
time has steeper increasing. The Prediction strategy
show stable latency performance with increasing
difference, but the Origin is affected more severely.
This improvement with the Prediction is because
forcing more adaptive memory allocation when the
skewed data grows over varying time.

Origin
Frediction

A=1 A=3 A= A=T A=9
Differences (%)

Fig. 7 Latency performance over data-skewed sources

1IV. CONCLUSIONS

Adaptive memory management is of particular
importance for a data stream management system
since continuous queries over data streams as well as
changing stream properties over varying time.
Memory efficiency can be an important issue due to
the huge volume of data streams. Data skew is a
common feature of massive data streams. In this paper
we have formalized the problem and defined the

probabilistic prediction method for memory efficiency.

Also we have presented a timestamp B-tree index
with weight of each data sources that process
continuous queries over data streams. This indexing
approach on data source and time allows efficient look
up of time steps in which the node has specific
probability. Our proposed strategy can optimize for
memory performance and latency performance over
data skewed sources. In general, we believe this
strategy will be efficient in any application in which
stream characteristics can be skewed statistically over
varying time within a specific time interval.

REFERENCES

(11 P. A. Tucker, D. Maier, T. Sheard, and L. Fegaras,
“Exploiting Punctuation Semantics in Continuous
Data Streams,” IEEE Trans. On Knowledge and Data
Engineering, Vol. 15, No. 3, pp. 555-568, 2003.

[2] S.Badu, U. Srivastava, and J. Widom, “Exploiting k-
Constraints to Reduce Memory Overhead in
Continuous Queries over Data Streams,” ACM Trans.
On Database Systems, Vol. 29, No. 3, pp. 545-580,
2004.

[3] J. Li, K. Tufie, D. Maier, and V. Papadimos,
“AdaptWID: An Adaptive, Memory-Efficient
Window Aggregation Implementation,” [EEE
Internet Computing, Vol. 12, No. 6, pp. 22-29. 2008.

[4] M. Cammert, J. Kramer, B. Seeger, and S. Vaupel,
“An Approach to Adaptive Memory Management in
Data Stream Systems,” Proc. of ICDE 06, pp. 137-
139, 2006.

[5] L. Golab and M. T. Ozsu, “Issues in Data Stream
Management,” SIGMOD Record, Vol. 32, No. 2, pp.
5-14,2003.

[6] F. Wang and P. Liu, “Temporal Management of RFID
data,” Proceeding of the VLDB 05, pp.1128-1139,
2005.

[7] B. Babcock et al.,, “Model and Issues in Data Stream
Systems,” Proc. Symp. Principles of Database
Systems, ACM Press, pp. 1-16, 2002.

[8] M. M. Gaber, A. Zaslavsky, and S. Krishnaswamy,
“Mining Data Streams: A Review,” ACM SIGMOD
Record, Vol. 34, No. 2, pp. 18-26, 2005.

[9] U. Srivastava and J. Widom, “Flexible Time
Management in Data Stream Systems,” PODS 2004,
ACM, pp. 263274, 2004.

[10] J. Gao et al,, “Classifying Data Streams with Skewed
Class Distributions and Concept Drifs,” /EEE Internet
Computing, Vol. 12, No. 6, pp. 37-49. 2008.

[11]J. Li et al., “Semantics and Evaluation Techniques for
Window Aggregates in Data Streams,” Proc. ACM
SIGMOD 05, ACM Press, pp. 311-322, 2008,

[12]D. Abadi et al, “Aurora: A New Model and
Architecture for Data Stream Management,” VLDB J.,
Vol. 12, No. 2, pp. 120-139, 2003.

Hong-won Yun

He received his B.S. and the Ph.D.
degrees at the Department of
Computer Science from Pusan
National University, Korea, in
1986 and 1998, respectively. He
is a professor at the Department
of Information Technology, Silla
University in Korea. His research interests include
temporal database, semantic web, and data stream
management system.

