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Abstract : The two correlation times previously obtained in our coupled “C
relaxation measurement for the methyl group in 2,6-dichlorotoluene may be used as
a criterion for evaluating the reorientation dynamics of an internal rotor. We
numerically tested an extended diffusion model and the Smoluchowski diffusion
equation to see how the rotational inertial effect and jump character contribute to the
internal correlation time ratio of the internal rotor. We also analytically solved the
general jump model with three different rate constants in a sixfold symmetric
potential barrier. By assuming that the internal rotation of the methyl group in 2,6-
dichlorotoluene can be described in terms of jumps among sixfold harmonic
potential wells, we can conclude that the jump model satisfactorily reproduce the
experimental data and the rate for sixfold jump is at least 1.53 times as great as that
of a threefold jump.
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INTRODUCTION

The NMR relaxation data of nuclear spins located in a methyl group can help us gain a
wealth of insight regarding the physical aspects of detailed molecular dynamics.'” Previous
study on the AX; spin system was primarily focused on the conventional spin-lattice
relaxation of A("’C) or X('H) in the methyl group.™ However, the experimental 7; data
alone cannot fully characterize the motion of molecules undergoing complex anisotropic

reorientation because that data gives only one molecular correlation time.*” Thus, more
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sophisticated relaxation methods are needed to thoroughly comprehend the molecular
motion. The scalar-coupled relaxation experiment pioneered by Grant et al. three decades
ago is a suitable and powerful technique for this purpose.'®'*> While exploring the relaxation
based on the modulation of intramolecular dipolar interactions they theoretically and
experimentally investigated various weakly coupled spin systems. In contrast to the AX,
spin system, the AX; spin system has been the subject of considerable theoretical but
relatively little experimental study. Nonetheless, the physical properties of small and large
molecules are known to be affected in a delicate manner by the presence of an internal CHs
group within a given molecule. There is a large difference, for example, in the melting
points between benzene and toluene. The white soft rubber poly(methyl acrylate) at room
temperature shows quite different physical property from the hard plastic poly(methyl
methacrylate); that is, the extra methyl group in the main chain of poly(methyl
methacrylate) affects the mobility of the polymer chain. Thus, it is important to
experimentally extract the dynamic parameters of the internal rotor.”*"

Several useful molecular parameters (such as the dipolar and random spectral
densities) can be extracted from the coupled relaxation data. If we assume, firstly, that the
whole molecule can be described by the overall anisotropic diffusion and, secondly, that
there is a coincidence between the internal rotation axis and one of the principal axes of the
overall rotation diffusion tensor, we can formulate the general dipolar correlation time as a
function of the diffusion tensors and the internal correlation times. Of these the most useful
dynamic parameters for characterizing the internal rotation dynamics are the two internal
correlation times for the reorientation of the methyl group, T Sj and T (1121:’ these parameters
can not be uniquely obtained by a conventional T; experiment. We expected the relative
ratio of these correlation times to depend on the models that were adopted to justify the
experimental data.” Abragam pointed out that under the extreme narrowing condition, the
effective correlation time T'> the for the whole molecule is related to the 7 "of the Debye
formulaas 7"/7® =3.1%"" The relative large value for the overall motion comes from the
intrinsic assumption of small angular steps displacement because in a diffusion limit the
rotational motion is strongly affected by the intermolecular collisions. Most spherical small
molecules such as chloroform and methane show an inertial reorientational character rather

than a diffusive character. The internal rotor dynamics in a relatively diluted liquid can
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essentially be described by the extended diffusion equation in the same manner. Thus, we

tested the extended J-diffusion model by extending the angular diffusion steps to an

arbitrary size.'®"

The rotational Smoluchowski equation, which encompasses a large angle
displacement character of diffusion in a specific potential was also solved under a sixfold
trigonometric potential.”® Finally, we propose a model in which the methyl group
simultaneously undergoes twofold, threefold and sixfold jumps among six equivalent
potential minima. We then analytically solve the master equation for that situation to see

which theoretical models reproduce the experimental data.

DIPOLAR SPECTRAL DENSITY AND INTERNAL ROTATION CORRELATION

TIME

The dynamical evolution of the magnetization modes for a nuclear spin system can be
described by the Redfield equation.*’”* Previously we have derived the following

expression for the dipolar spectral densities between a pair of dipolar vectors ij and mn.?

D 3 YinyrnYnhz
ijmn :4—0 —3 3 Tp (1)

Tij Vmn

The correlation time, T has the information about molecular anisotropic tumbling

motion. In general, ' D is a function of several molecular dynamic parameters and cannot

casily be derived in a compact form. Nonetheless, if we assume that the axis of the internal

rotation coincides with one of the principal axes of the overall rotational diffusion tensor,

say the z-axis, then ' D is given by
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E, through Ej5 appearing in Eq.(2) are expressed in terms of the three principal
values of rotational diffusion tensor, D, Dyy, and D,., like as formulated by Grant"?

And the coefficients ¢;'s are the function of the orientations of the two dipolar vectors ij
and kl:

¢; =6cos0;; cos 0, sin O, sin B, cos(d),-j - ¢kl)

¢y = (3/2)sin2 0 sin? 0 cos[2(p; — b )|

¢3 = (3/2)cos*(B/2)sin > 0, sin 29, cos [2(¢ij —bu )]

cyp = sinz([?)/2)(3cos2 0, — 1X3cos2 0y — 1)

cq =(3/2)sin 2 (B/2)sin? 0, sin 29, cos [2(4),7 by )]

Cy =cos2([3/2)(300529,~j —1X3cos2 Ou —1) 3)
where 8,8, ¢;;, and ¢;; denote the polar and azimuthal angles of the dipolar vectors ij

and &/, respectively. The angle B is defined by

B =tan - l\/g(Dxx - Dyy )/{2Dzz - (Dxx + Dyy )}J “4)

_(1) and TFZ) , are defined as

int nt

In this formalism the internal correlation time, T

exp (— t/tfft)): (exp[- iko(0)]exp [iko (1)) Kk =1,2 (5)
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where (p(f) denotes the angle that describes the reorientation of the methyl group about its

axis of symmetry. The two internal correlation times have a key role in revealing the

internal rotation of the methy! group.

EXTRACTING DIPOLAR SPECTRAL DENSITIES

For a coupled spin relaxation measurement five different types of initial spin states

were prepared by applying the following five pulse sequences’

o : 1
(a) total carbon magnetization inversion (carbon hard pulse) —/7 ZC

N : g
(b) total proton magnetization inversion (proton hard pulse) —=(1; + 1 +1 Y

23

(c) longitudinal two spin order preparation —=1 ,C v 5 +I10+ 1)

NE)

(d) longitudinal three spin order preparation — I3 (1017 + 117" +1J1))

V3

(e) longitudinal four spin order preparation 4751 o 1 4 ”

The five observable magnetization modes that were perturbed by several pulses were
numerically fitted with the well known Redfield Equation.”’ Table | lists the dipolar and
random spectral densities obtained by this fitting procedure at two different °C frequency.
The dipolar spectral densities are similar in magnitude at both magnetic fields, but the slight
difference in the j. can be ascribed to the coupling between the dipolar interaction and the
chemical shift anisotropy of the carbon nucleus. To double-check the proton dipolar spectral
density at 200MHz of a 'H frequency, we conducted a normal inversion recovery proton
relaxation experiment with a dilution technique (0.078, 0.035M, 0.012M of 2,6-
dichlorotoluene/CDCls) that is conventionally used to safely extract the dipolar spectral

densities of proton without an interproton dipole-dipole interaction. From these dipolar
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spectral densities three overall diffusion constants and two internal correlation time were

uniquely determined with Eq.(2) and the results of which are shown in Table 6 of Paper 3.

We then used these dynamic parameters to deduce the detailed molecular motion of the

internal methyl group.

Table 1. Spectral Densities for Methy! System at Two Magnetic Fields

50MHz 125MHz
Jon 0.0039 £ 0.00005 0.0039 + 0.00006
Kucn 0.0020 £ 0.00011 0.0028 + 0.00014
Kcnn 0.0042 £ 0.00010 0.0042 + 0.00009
Kennn 0.0022 £ 0.00042 0.0020 £ 0.00048
Jun 0960006667 ii 0%0000012 55* 0.0063 £ 0.00024
Kuun 0.0053 £0.00025 0.0051 = 0.00027
Jc 0.0135 £ 0.00069 0.0165 £ 0.00075
Ju 00.60222115ii 096000008945* 0.0227 £ 0.00094
kan 0.0269 £0.00143 -0.0253 £ 0.00151

( * from the diluted proton inversion recovery pulse sequence)

NUMERICAL RESULTS FOR SEVERAL MODELS AND DISCUSSION

If the internal rotor sits on the a spherical molecule that is undergoing rotational

diffusive motion, the dipolar correlation time in Eq.(4) can be simply converted into

2¢, (3cos’ 6, —1)(3cos” G, —1)

- 1
o 6D +1/7

+ +
6D +1/7>

nt

6D

(6)
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This result is equivalent to Woessner’s diffusion model in which an internuclear

dipolar vector diffuses freely about an internal symmetry axis attached to a tumbling sphere

232

at a specified angle.”** The ratio between the t'" and 7 (,2) of this model is much greater

nt mt
(= 4) than the experimental value (1.73 to 1.75). The higher value is likely due to the
inherent nature of the rotational diffusion theory, where molecules incessantly collide with

each other thereby yielding a larger value for t'” than for @

mt nt

The extended diffusion model gives a better description of the experimental data than
the simple diffusion theory because it removes the restriction of small angle diffusive steps
and allows the inertial effect. Bull applied this model to the symmetric top molecule with an
internal rotor.” Later, a successful description of the T} of an internal rotor of toluene was
reported.” In this picture, the direction of the internal angular momentum vector is fixed
along the axis of the internal rotation and only the magnitude of the internal angular
momentum is randomized at the end of each free rotation step.”’ Shin developed a more
general expression where the collision simultaneously randomizes both the overall and
internal angular momentum. The ratio of the internal correlation times in this framework can

be analytically formulated by
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M

Eint
T _ o lezlgl)
o S
1-7 gy

(7
where g = flexp(l/xsri)erfc(\ll/xsri ), x, =25k, T/, s=12
xs

The erfc(x) is the complementary error function and I, the moment of inertia of the
internal rotor, k3T the Boltzman factor. Theoretical values at two limiting cases, namely the

diffusion limit (= 2.0) and the free rotation limit (= 4.0) can be obtained with the help of the

following identity and the L’Hospital theme;*

lime* erfc(x) =0, limxe” erfc(x)= \E (®)
X—>© X T

Fig 1. shows the curve of the internal correlation time ratio. As the momentum inertia of

the internal rotor goes to zero and the internal angular momentum correlation time increases

rapidly, the value of ri(it) / Ti(nzt) reaches the free rotor limit of 2. The value of z'i(it) / Ti(nzt)

increases sharply with the value of /1/x 7 ; , and the diffusion rotor limit can be read from

the curve.
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Fig 1. Internal correlation time ratio as a function of reduced internal angular momentum

correlation time.

From Fig 1. we can deduce that the extended diffusion model cannot reach the
experimental value (1.73 to 1.75) even at the free rotor limit. This occurs because the
extended diffusion model has an inherent limitation with respect to the diffusive behavior of
the internal rotor; that is it does not consider the effect of the potential barrier around the
symmetric internal rotor. Hence, we tested the Smoluchowski equation, which is adequate

for describing the mixed behavior of both the diffusion and the jumping between the
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potential wells. This equation can be easily solved numerically if the tractable potential is
known.”’

In this formalism, the correlation times can be shown to have the form

=3 pY/AaD  1=12 9)
k

where ﬂél) is a linear combination of elements of eigenvectors Y for the given potential

matrix B.

Numerical calculations reveal that in the case of the sixfold potential function
V(qo) =n (1 ~ €08 6go) the extension of the matrix size to dimensions larger than 100 x 100
produces very little effect on its first few lowest eigenvalues and the corresponding

eigenvectors; hence, we truncated the size of the matrix to 126 x 126. First few lowest
eigenvalues and the corresponding coefficients ,i") ’s calculated at various values of barrier
height 277/kT for sixfold potential function are listed in Table 2.

From these resultys, we can see that the magnitude of coefficients ,8,51) ’s sharply

decreases as the eigenvalues A, ’s increase, and, as a result, the series in Eq.(9) rapidly
converges. In reality, we found that the sum of the first eigenvalue term is responsible for

more than 98% of the series sum and from this sum, we were able to calculate the value of
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Table 2. Internal Correlation Time Ratio for Sixfold Barrier.

E, ‘E(l)
QuiksT) | 1@ B, BYs B, B D D AsD AgD

0.0 4.00 | 1.000 0.000 1.000 | 0.000 1.000 4.000 16.000 36.000

1.0 3.86 | 0.997 | 0.00346 | 0.958 | 0.0405 | 0.872 3.262 18.403 26.740

3.0 3.37 | 0984 | 0.00930 | 0.926 | 0.0567 | 0.345 1.097 33.470 39.790

5.0 3.17 | 0.988 | 0.00940 | 0.947 | 0.0409 | 0.0847 | 0.257 58.310 63.490

7.0 3.07 | 0993 | 0.00486 | 0.971 | 0.0214 | 0.0168 | 0.0504 91.004 95.434

9.0 3.06 | 0.991 | 0.00032 | 0.977 | 0.0197 | 0.0030 | 0.0090 | 128.910 | 132.520

Ti(;t) / Ti(nzt) as a function of the barrier height. The ratio of the two correlation times calculated

at several different values of barrier height for sixfold potential function is shown in Table 3.

In the presence of a sixfold potential barrier, this model predicts that the ratio of
Ti(;t) / Ti(nzt) would ranges from a dilution limit of 4.0 for a zero barrier height to a high barrier
limit of 3.0 is closely related to the sixfold jumping model. However, the large value of
Ti(rit) / Z'i(nZt) shows that this model is inadequate for describing the motion of the methyl group
in the 2,6-dichlorotoluene.

When we use a threefold potential function, the internal correlation time ratio,

1) /.(2)
Tint / L . tends to vary more widely; that is from a diffusion limit of 4 to 1 with high
threefold barrier limit. Nonetheless, it is difficult to envision how the threefold jump comes

into play in our system.
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Table 3. Internal Correlation Times and Ratios

T/ Th! (Exp) 1.73 ~1.75
Free Internal Diffusion 4.0
Diffusion Limit 4.0
Extended Diffusion Model
Free Rotor Limit 2.0
V(p) = n(1-cos3 1.5~4.0
Diffusion in a potential (@) = 7 (1-cos3¢)
V(p) = 11 (1-cos6¢) 3.0~4.0
3-fold Jump Limit ky#0,k, k=0 1.0
k1¢0,k2,k3:0 1.5
6-fold Jump Model ki, k%0, k3=0 3.0
ki,ko, ks 20 1.0~3.0

The presence of two bulky chlorine atoms in the 2,6-dichlorotoluene might have a
strong influence on the internal methyl rotor to bring about a high rotational potential barrier.
In that case, a large angle jump model based on jumps among the potential wells can
describe this situation more elegantly. A jump model that can explain the internal rotation of
the methyl group in the presence of a sixfold potential barrier can be described by the

following master equation:

4

P==| Y Ry |B+ DR, P. (i,j=16) (10)
dt &) '

where the element of the rate matrix, R, , represents the rate of the j —» i transition and

ij »

satisfies the condition of Rij =R Iz
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Eq.(10) may be solved under boundary conditions in which one of the six P's is
equalto 1 at £ =0 and all the P,'s become equal to 1/6 . Suppose that methyl group is in
the conformation corresponding to the angle @ =0 at t = 0; thatis P(¢, 0]0,0) =1 for
¢ =0 and P(p, 0]0,0) =0 for all other values of @ . If we denote the rate constants for
sixfold, threefold, and twofold jump, by &, k,, and k;, respectively, the rate matrix has

the form

v, 1 Y, 2r, 4 1

1 v 1 1 2r, r
R- & Y 1 v, 1 7 2r, an
: 2r, h 1 r, 1 t '

noo 2n r 1 Yy 1

1 Y 2r, 7 1 r,

where 1, =k, [k, , r, =k, [k, and r; =-2(r; + 1, +1).

To analytically solve Eq.(10) we need diagonalize the 6x6 rate matrix Eq.(11). This
task is difficult but we can alleviate the difficulty by considering the symmetry inherent in
the present problem. To see how the symmetry work in solving the master equation suppose
the methyl group assume the angle ¢ =0 at £ = 0. Then, due to randomness of its

rotational motion, we may expect that at any later time ¢,

Pr/3, 1

0,0) = P(5n/3, 1]0,0) and P(2r/3, #]0,0) = P(4n/3, £]0,0). Therefore,
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it will suffice to diagonalize the 4 x 4 rate matrix given by Eq.(12) instead of the lager

matrix (11).

7, 2 2r,  2rn,
1 r,+n 1+2r,
o142 k4 1

2r, 2r, 2 ¥,

SN
SU ST o lu
SUJ o lu

0,0).

where P, is the shorthand notation for P( kn/3,t

(12)

It is well known from the linear algebra that the solutions to Eq.(14) have the form

3
P = Zajk exp(— A, ¢)
k=0

where A ’s are the eigenvalues for the rate matrix given in Eq.(13). Therefore, the

correlation functions < exp [— ip (O )]exp [i [0) (t )] > and

< exp [— i 2(p(0 )]exp [i 2(p(t )] > take the following form:

3

<eXp [" i(P(O)]eXP [i(P(t)] > = Z (a0k T Oy — Oy — 0‘3k)eXp (_ Ay t)

k=0

(13)

(14)

<eXp [_ i2(p(0)]exp [i2(p(t)] > = g}(aOk Oy — Oy + 0y, ) eXp (_ Ay t) (15)
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3
The initial condition P; =6 ,, at =0 requires that Zocjk =0, .Andthe
k=0

boundary condition Pj = % at t =00 requires that one of the eigenvalues, say A, , must

be zero and o jo = % regardless of j value. At ¢ = 0 both correlation functions in Eq.(13)

become equal to 1, respectively, whence the following additional conditions should be

satisfied:
3 3
Z(CLOk T 0y — 0y ‘0‘31() = Z(am Oy Ty +a3k) =1 (16)
k=0 k=0

The condition « ;5 = % regardless of j automatically makes both correlation functions

vanish ¢ = . The coefficients o i 's can in general be evaluated from the following

eigenvalue equation under constraints imposed by the boundary conditions.

(A =2-21=-2r) 0 + 20, + 210, +2ra, =0
O + (A =2—-r=2n) o, +(1+2n) 0y, +r 0y =0
Koy +(+2n)a, + (b =2 -1 -2n) 0, +0o,, =0
2r0g, + 20y +20,, +(A, =221 -2r)a,, =0

for k=0,1,2, and 3.

(17)
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The above master equation can be analytically solved to yield the following four

eigenvalues:

A, =0, (14+3n +4n)k, (4+4r)k, 3+3n)k (18)

These corresponding eigenvalues are fed back into a secular equation to find the o 's.

Thus, each conditional probability density is obtained as follows

B = é [1 +2exp(—A,1) +exp(—A,t) + 2exp(—7»3t)]

P = é [1 +exp(—A,t) —exp(—A,t) — exp(—k3t)]

(19)
P, = % [1— exp(—,2) + exp(~A, 1) — exp(—A,1)]
P = %[1 —2exp(—At) —exp(—A,t)+2 exp(—Mt)]
This produces the following results:
<exp[i(p(0)]exp[— iqo(t)]> = exp[— (ky +3k, + 4k;) t] (20)

(exp[2ig(0)]exp[- 2i0(n)]) = exp|- 3k, +3k 1] @1)
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which means that

) = (k, +3k, +4k,)™ and ©12) = (3k, + 3k, )™ 22)
and
O

= 23
@k 43k, + 4k, 29

int

We have to note here that twofold jump cannot affect the correlation function of (22)
and, hence, Tﬁ) does not depend on k; . If the ratio of the internal correlation times is set at
a constant, o, (1.75 in our experiment), then the relation among the jumping rates can be

visualized. Fig. 2 shows ) / tﬁ) with two relative rate constants (r;, and ;). We can easily

nt

see from Fig. 2 that »;, and r; are linearly and competitively correlated to each other and that
k> 1s at least 4o/ (30-3) times greater than k3. In our experiment (o = 1.73 to 1.75) k, isat
least three times larger than £; so k; is not too small to ignore for a good interpretation of the
experimental data. This explains why a 180° transition may simultaneously take place in the
reorientation of the methyl group of 2,6-dichlorotoluene. Eq.(23) encompasses the ever-
existing jump model results, which can easily be tested. First, if we set &;, and £;3 to zero,

then the ratio of internal correlation time reduces to a simple 120 jump motion important for
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the many internal segmental rotations, such as the gauche-trans transition in chain
molecules.””” Second, if the three rate constants are equal, then the 1:51112 / rﬁj} value is equal
to 3/4, and this value is even lower than the 120° jump limit ( = 1.0 ), which seems to be

unphysical. Experimentally, we can measure the two correlation times rglz and ’Egﬁt) , but,

unless we can measure the third, we cannot uniquely determine the three rate constants

ki, k,, and k5 on the basis of this model. However, even in this case, we can set the upper

@)

nt

boundary for the 'cfrllz / T,; ratio. Thatis, since k5, however small, is not zero, we have

24)

which means k, /k, < 0.56. In other words, the rate for the threefold jump is at most
equal to 0.56 times the rate for the sixfold jump, which sounds very reasonable even from an

intuitive perspective.
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Fig 2. Graphic representation of relative rate constants at a specific internal correlation time

ratio.

CONCLUSIONS

In summary, we have shown that the methyl rotor dynamics of 2,6 dichlorotoluene can
be described within the framework of a jump in a sixfold harmonic potential well. The
relative magnitude of the internal correlation times of the molecule obtained from the *C-
coupled relaxation experiment leads to the conclusion that the jump rate between the nearest
potential well is at least 1.53 times as great as that of the next nearest well. The coupled
AX; multi-pulse spin relaxation experiment together with the inversion recovery process for
X3 spin system is still valuable tool to extract the spectral densities of methyl group to
understand the internal rotor dynamics of methyl group, which helps to investigate the more
complex motion of side chain as well as overall backbone motion of polymer and natural

macromolecules that is currently being studied in our laboratory.
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