DOI QR코드

DOI QR Code

On Quasi-Baer and p.q.-Baer Modules

  • Received : 2008.01.10
  • Accepted : 2008.10.21
  • Published : 2009.06.30

Abstract

For an endomorphism ${\alpha}$ of R, in [1], a module $M_R$ is called ${\alpha}$-compatible if, for any $m{\in}M$ and $a{\in}R$, ma = 0 iff $m{\alpha}(a)$ = 0, which are a generalization of ${\alpha}$-reduced modules. We study on the relationship between the quasi-Baerness and p.q.-Baer property of a module MR and those of the polynomial extensions (including formal skew power series, skew Laurent polynomials and skew Laurent series). As a consequence we obtain a generalization of [2] and some results in [9]. In particular, we show: for an ${\alpha}$-compatible module $M_R$ (1) $M_R$ is p.q.-Baer module iff $M[x;{\alpha}]_{R[x;{\alpha}]}$ is p.q.-Baer module. (2) for an automorphism ${\alpha}$ of R, $M_R$ is p.q.-Baer module iff $M[x,x^{-1};{\alpha}]_{R[x,x^{-1};{\alpha}]}$ is p.q.-Baer module.

Keywords

References

  1. S. Annin, Attached Primes Under Skew Polynomial Extensions, Preprint. https://doi.org/10.1142/S0219498811004689
  2. M. Baser and A. Harmanci, Reduced and p.q.-Baer Modules, Taiwanese J. Math., 11(2007), 267-275. https://doi.org/10.11650/twjm/1500404651
  3. M. Baser and M. T. Kosan, On Quasi-Armendariz Modules, Taiwanese J. Math., 12(2008), 573-582. https://doi.org/10.11650/twjm/1500602422
  4. G. F. Birkenmeier, J. Y. Kim, J. K. Park, Polynomial extensions of Baer and quasi-Baer rings, J. Pure Appl. Algebra, 159(2001), 24-42.
  5. G. F. Birkenmeier, J. Y. Kim, J. K. Park, Principally quasi-Baer rings, Comm. Algebra, 29(2001), 639-660. https://doi.org/10.1081/AGB-100001530
  6. G. F. Birkenmeier, J. Y. Kim, J. K. Park, On Polynomial extensions of principally quasi-Baer rings, Kyungpook Math. J., 40(2000), 247-253.
  7. W. E. Clark, Twisted matrix units semigroup algebras, Duke Math. J., 34(1967), 417-424. https://doi.org/10.1215/S0012-7094-67-03446-1
  8. Y. Hirano, On annihilator ideals of a polynomial ring over a noncommutative ring, J. Pure Appl. Algebra, 168(2002), 45-52. https://doi.org/10.1016/S0022-4049(01)00053-6
  9. T. K. Lee and Y. Zhou, Reduced Modules, Rings, modules, algebras and abelian groups, Lecture Notes in Pure and Appl. Math., 236(2004), 365-377.
  10. B. Stenstrom, Rings of Quotients, Springer(Berlin), 1975.
  11. H. Tominaga, On s-unital rings, Math. J. Okoyama Univ., 18(1976), 117-134.