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ABSTRACT. For an endomorphism « of R, in [1], a module Mg is called a-compatible
if, for any m € M and a € R, ma = 0 iff ma(a) = 0, which are a generalization of
a-reduced modules. We study on the relationship between the quasi-Baerness and p.q.-
Baer property of a module Mg and those of the polynomial extensions (including formal
skew power series, skew Laurent polynomials and skew Laurent series). As a consequence
we obtain a generalization of [2] and some results in [9]. In particular, we show: for an
a-compatible module Mg (1) Mg is p.q.-Baer module iff M [x; &] gz;q] is p.g.-Baer module.
(2) for an automorphism a of R, Mg is p.q.-Baer module iff Mz, z~"; ) Rz z-1a] 18 D-q-
Baer module.

1. Introduction

Throughout this work all rings R are associative with identity and modules are
unital right R-modules and o : R — R is an endomorphism of the ring R. In [7]
Clark called a ring R quasi-Baer ring if the right annihilator of each right ideal of
R is generated (as a right ideal) by an idempotent. Recently, Birkenmeier et al. [5]
called a ring R right (resp. left) principally quasi-Baer [or simply right (resp. left)
p.q.-Baer] if the right (resp. left) annihilator of a principal right (resp. left) ideal
of R is generated by an idempotent. R is called p.q.-Baer if it is both right and left
p.q.-Baer. A ring is called reduced ring if it has no nonzero nilpotent elements and
Mp, is called a-reduced module by Lee-Zhou [9] if, for any m € M and a € R,

(1) ma = 0 implies mR N Ma = 0,

(2) ma = 0 iff ma(a) =0,
where a : R — R is a ring endomorphism with a(1) = 1. The module Mg is called
a reduced module if M is 1gr-reduced, where 1g is the identity endomorphism of R.
It is clear that R is a reduced ring iff Ry is a reduced module.
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According to Annin [1], a module My is called a-compatible if ma = 0 if and
only if ma(a) = 0 (i.e., only the second condition is satisfied in the definition of
a-reduced modules). It is clear that, if My is a-compatible then, ma = 0 if and only
if ma®(a) = 0 for all k and every a-reduced modules are a-compatible. We write
R[z], R[[x]], R[z, 2~ '] and R|[[z,z~!]] for the polynomial ring, the power series ring,
the Laurent polynomial ring and the Laurent power series ring over R, respectively.
In [9] Lee-Zhou introduced the following notation. For a module Mp, we consider

Mz;o] = {>;_ymz’ : s>0, m; € M},

M{z;a]] = {d> 22, mzt :m; € M},

Mz, z 0] = {3 m’ : s>0,t>0, m € M},

Mz,z Y]] = {32 ,mzt © s>0, my € M}.

Each of these is an Abelian group under an obvious addition operation. Moreover

M z; @] becomes a module over R[x; o] under the following scalar product operation:
For m(z) = Y.0_,m?t € M[z;a] and f(z) = Y'_,a;a’ € R[z;al;

s+t
m(x)f(z) = Z Z miai(aj) zF.
k=0 \it+j=Fk

Similarly, M|[x;]] is a module over R][[x;«]]. The modules M[x;a] and M[[x; o]
are called the skew polynomial extension and the skew power series extension of
M respectively. If o € Aut(R), then with a similar scalar product, M[[z,z~1;q]]
(resp. M|z, 1;al]) becomes a module over R[[x,z~1;a]] (resp. R[z,x~1;a]). The
modules M|z, 2% a] and M[[z,271;a]] are called the skew Laurent polynomial
extension and the skew Laurent power series extension of M, respectively.

Following Lee-Zhou [9], a module Mpg is called Armendariz if, whenever
m(z)f(xz) = 0 where m(z) = >°7_,m;z’ € M[z] and f(z) = Z;':o ajz’ € Rlz],
we have m;a; = 0 for all 4,j. By [9, Lemma 1.5], every reduced module is Armen-
dariz. In [3], we define a module Mg to be quasi-Armendariz if whenever these
polynomials satisfy m(x)R[z]f(z) = 0, we have m;Ra; = 0 for all i, j.

For a subset X of a module Mg, let rg(X) = {r € R: Xr = 0}. In [9] Lee-
Zhou introduced quasi-Baer module as follows: Mpg is called quasi-Baer if, for any
submodule N of M, rp(N) = eR where e? = e € R. Clearly R is a quasi-Baer ring
iff Rp is quasi-Baer module; if R is a quasi-Baer ring then, for any right ideal I of
R, IR is a quasi-Baer module. Following [3], My, is called principally quasi-Baer (or
simply p.q.-Baer) module if, for any m € M, rg(mR) = eR where e? = ¢ € R. Tt is
clear that R is a right p.q.-Baer ring iff Ry is a p.q.-Baer module. If R is a p.q.-Baer
ring, then for any right ideal I of R, Iy is a p.q.-Baer module. Every submodule
of a p.q.-Baer module is p.q.-Baer module. Moreover, every quasi-Baer module is
p.q.-Baer.

Motivated by results in Lee-Zhou [9], [3] and [2] we investigate a generalization
of a-reduced modules and introduce skew quasi-Armendariz types module which
are skew polynomials versions of the quasi-Armendariz modules.
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2. Skew polynomial and power series modules over quasi-Baer and p.q.-
Baer modules

In this section we investigate a generalization of a-reduced modules and in-
troduce skew quasi-Armendariz and skew quasi-Armendariz of power series type
modules, which are skew polynomial versions of the quasi-Armendariz modules.
We then extend our previous results in [2] to non a-reduced a-compatible modules.
Assume that Mpg is an a-compatible module. Then we will show that:

(1) Mg is p.q.-Baer module if and only if M[z; a]gs;q is P.q.-Baer module.

(2) Mg is quasi-Baer module if and only if M[z; a]g[s;q) is quasi-Baer module

if and only if M{[[x; o] g[[a;a)) is quasi-Baer module.

(3) If M[[z; a]]g[jz;a)) is P-q-Baer module then Mg is p.q.-Baer module.

Definition 2.1. A module Mg is called,

(i) skew quasi-Armendariz, if whenever m(z)R[z; o] f(x) = 0 for m(z) = Y7_,mz’ €
Mlz;a] and f(x) = Z;:o ajz? € R[z;al), then m;Ra; = 0 for all i, j.

(i) skew quasi-Armendariz of power series type, if whenever m(x)R[[z; a]]f(z) =0
for m(z) = Y7Zgmiet € Ml[z;a]] and f(z) = Y72 a27 € R[[a;a]], then
m;Ra; = 0 for all 7, j.

Note that if Mg is assumed to be a-reduced, then it is clear that Mg is skew
quasi-Armendariz and skew quasi-Armendariz of power series type. To see that, let
m(z)R[[z;a]] f(z) = 0 for m(z) = > ;o mz’ € M[[z;a]] and f(z) = Y00 a2 €
R[[z;«]]. Then m(z)Rf(x) = 0 and so m(z)cf(z) = 0 for all ¢ € R. Hence 0 =
(i gmiz’)e(372 g aja?) = (072, mix') (3072 caja’). Since Mp is a-reduced,
Mp, satisfies all the hypothesis of [9, Lemma 1.5] by [9, Lemma 1.2]. Hence, we
have m;a’(ca;) = 0 and so m;ca; = 0 for all 4, j, since Mp is a-compatible. Then
m;Ra; = 0 for all ¢,j and therefore, Mp is skew quasi-Armendariz of power series
type.

Following [8], for a module Mg, rAnng(sub(Mpg))={rg(U) | U is a submodule
of MR}

Proposition 2.2. Let Mg be an a-compatible module. Then the following state-
ments are equivalent:
(1) Mg is skew quasi-Armendariz.
(2) ¥ : rAnng(sub(MRg)) — rAnngpg.q) (SUb(M[2; ] R[z:a]));

I — I[z;a] is bijective.
Proof. (1)=(2) Let I € rAnng(sub(Mg)). Then there exists a submodule U of
Mp such that I = rr(U). Then we have 7r(U)[z;a] = rg[ma)(Ulz;a]) since
Mp is a-compatible. So v is well-defined. Obviously % is injective. Now, for
a submodule V' of M[x;a]g[zia]; 16t TRz;a)(V) € TANN R0 (SUb(M[2; A R[zia]))-
Let Cy denote the set of coefficients of elements of V. Then Cy R is a sub-
module of Mp. We claim that ¢(rr(Cyv R)) = rr(CvR)[z;a] = TRz (V). Let
f(x) = ap + a1z + -+ + a2t € 7r(Cy R)[z;a]. Then a; € rr(Cy R) and hence
(CyR)a; = 0 and in particular Cya; = 0 for all . Since Mg is a-compatible
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Cya¥(a;) = 0 for all k. Then v(z)f(z) = 0 for all v(x) € V. Thus Vf(z) = 0
and hence f(z) € 7g[za](V). Therefore rr(Cv R)[z;a] C rRiga)(V). Conversely,
let g(x) = bo + b1z + -+ + by2™ € TRig;a](V). Then Vg(x) = 0 and since V' is a
submodule of M [z; ] g(z;a), v(z) R[2; alg(x) = 0 for all v(z) € V. Since Mp, is skew
quasi-Armendariz, vRb; =0 for allv € Cy and j = 0,1,--- ,n. Hence (Cy R)b; =0
for all j. Therefore g(x) € rr(Cv R)[z;a]. Thus rg[;q)(V) € rr(Cv R)[x; . Con-
sequently, ¢ is surjective.

(2)=(1) Suppose m(z)R[z;a]f(z) = 0 for m(z) = Y7 mz* € M[z;a] and
flz) = Yj_gaa’ € Rlz;al. Then f(x) € rapqe(m(z)R[z;a]) = rr(CR)[x;al,
where C' is denote the set of coefficients of elements of m(x)R[z;a]. Then
a; € rr(CR) and so (CR)aj; = 0. In particular m;Ra; = 0 for all ¢,j. There-
fore My is skew quasi-Armendariz. |

Proposition 2.3. Let Mg be an a-compatible module. Then the following state-
ments are equivalent:
(1) Mg is skew quasi-Armendariz of power series type.
(2) ¢ : rAnng(sub(Mg)) — rANN g(z.a7) (SUb(M [[2; ] R[z;a]]) )
J = J[|z; a]] is bijective.
Proof. Similar to the proof of Proposition 2.2. O

Definition 2.4. A submodule N of a left R-module M is called a pure submodule
if L®&r N — L®pr M is a monomorphism for every right R-module L.

Following Tominaga [11], an ideal I of R is said to be left s-unital if for each
a € I there exists an x € I such that za = a. If an ideal I of R is left s-unital,
then for any finite subset F' of I, there exists an element e € I such that ex = e for
all x € F. By [10, Proposition 11.3.13], for an ideal I, the following conditions are
equivalent:

(1) I is pure as a right ideal in R,

(2) R/I is flat as a right R-module,

(3) I is left s-unital.

Theorem 2.5. Let Mg be an a-compatible module. Then the following are equiv-
alent:
(1) rr(mR) is pure as a right ideal in R for any element m € Mpg.
(2) TR0 (m(z)R[2; @) is a pure as a right ideal in R[x;a] for any element

m(x) € M[x;a). In this case Mg is skew quasi-Armendariz.
Proof. (1)=(2) Assume that condition (1) holds. First we shall prove that Mg is
skew quasi-Armendariz. Suppose m(z)R[z;a|f(z) = 0 for m(z) = Y ;_,mz’ €
Mlz;a] and f(x) = Z;:o ajz? € R[z;al. Then (3, mimi)R(Zﬁ-:O ajz?) = 0.
Let ¢ be an arbitrary element of R. Then we have the following equation:

(1) 0=mocag + -+ (msa®(cas_a) +ms_10° " (cas_1) + ms_oa"?(cas))x* 2

+ (msa®(cas_1) +mq_1a°  (ca))z* T + mea®(cag)r .
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Then mgsa®(ca;) = 0 and hence mgca; = 0 since My is a-compatible. Thus
msRa; = 0 and so a; € rr(msR). By hypothesis, rg(msR) is left s-unital, and
hence there exists es € rr(msR) such that e;a; = a;. Replacing ¢ by cegs in Eq.(1),
we obtain

(2) 0=mocesap+ -+ (msa’(cesar—2) + ms,las_l(cesat,l) + ms,gaS_Q(cesat))

2572 4 (mga®(cesar_1) +mys_10° Hcegay)) T st

+ msa’®(cesar)x
Since es € rr(msR), msRe, = 0 and mya®(Res) = 0 for all k since My is a-
compatible. Using esa; = a; and m,a*(Res) = 0, we obtain from Eq.(2)

0 = mocesag + - + (ms_10° H(cesar_1) + m(g_2a872(cat))x5+t72+

me_1a® (cat)x“'t_l.

Then we obtain ms_ja° *(ca;) = 0 and hence m4_1ca; = 0 and so ms_1Ra; = 0
since Mg is a-compatible. Thus a; € rgr(ms—1R) and hence a; € rr(msR) N
rr(ms—1R). Since rr(ms—1R) is left s-unital, there exists f € rr(ms—1R) such
that fa; = ay. If we put es_1 = fes then es_1a; = a; and es_1 € rr(MsR) N
rr(ms_1R). Next, replacing ¢ by ces—1 in Eq.(1), we obtain ms_gca; = 0 in the
same way as above. Hence we have a; € rr(msR) Nrr(ms—1R) N rr(ms—2R).
Continuing this process, we obtain m;Ra; = 0 for all ¢ = 0,1, -+ ;s. Thus we get
(> miz®) Rl a](zz;é ajz?) =0, since My is a-compatible. Using induction on
s 4 t, we obtain m;Ra; = 0 for all ¢,j. Thus we proved that Mg is skew quasi-
Armendariz. Now, let m(z) = >0 jmz* € Mz;a] and f(z) = Zj‘:o ajz! €
T Rlzsa) (M(z) R[z;a]). Then m(z)R[z;a]f(z) = 0 and so m;Ra; = 0 for all 4,
since Mp is skew quasi-Armendariz. Since rr(m;R) is left s-unital, there exists
e; € rr(m;R) such that a; = e;a; for j = 0,1,---,t. Put e = ege; --- e, then
aj = eaj for j = 0,1,---,t. Hence ef(z) = f(x) and e € rgp.q(m(z)R[z;al)
since e; € rr(m;R) and Mg is a-compatible. Therefore rg(,.o(m(7)R[z; o) is left
s-unital.

(2)=-(1) Suppose that condition (2) holds. Let m be an element of Mp. Since Mp
is a-compatible, rr(mR) C rgiza(MmR[z;a]). Hence for any b € rgr(mR), there
exists a polynomial f(z) = Z;:o a;x? € rRga(mR[z;a]) such that f(z)b = b.
Then agb = b and ag € rr(mR). This implies that rg(mR) is left s-unital. O

Corollary 2.6. Let Mg be an a-compatible module. Then Mpg is p.q.-Baer if and
only if M ;] pa;a) s p.q.-Baer. In this case My is skew quasi-Armendariz.

Proof. Let Mg be a p.q.-Baer module. Then for each m € M, there exists e? =
e € R, such that rgr(mR) = eR. Thus rr(mR) is left s-unital for each m € M.
It follows from Theorem 2.5 that Mp is skew quasi-Armandariz. If rr(mR) = eR
for some e? = ¢ € R, then we see that ere = re holds for each r € R. Thus if
rr(m;R) = e;R, fori =0,1,--- ,n, then we get rg(moR+miR+---+m,R) = eR,
where e = ege; - - - e, and €2 = e € R. Now, let m(z) = mo+miz+---+m,z"™ and
f(@) = ap+arx+- - -+apz® such that f(z) € rgp;qa)(m(z)R[z;a]). Then m;Ra; =0



260 Muhittin Bager and Abdullah Harmanci

since Mg is skew quasi-Armendariz. Let rp(m;R) = ¢;R, for i = 0,1,--- ,n and
e = eger---ey. Then rgyqa(m(z)R[z;a]) = eR[z;a] and hence we learn that
M x; ] giz;a) is p.q.-Baer.

The proof for the converse part can be done similarly, and therefore is omitted. [J

Remark 2.7. Since a-reduced modules are a-compatible, Corollary 2.6 extends |2,
Theorem 7(1)(a)].

Corollary 2.8. Let Mg be a module. Then Mg is p.q.-Baer if and only if M[z] [y
is p.q.-Baer. In this case Mg is quasi-Armendariz.

Corollary 2.9([6, Theorem 3.1]). R is a right p.q.-Baer ring if and only if R[x] is
a right p.q.-Baer ring.

Proposition 2.10. Let Mg be an a-compatible module. Then (1)= (2)= (3).

(1) 7R[fe;a)) (M(@) R[[x; a]]) is a pure as a right ideal in R[[z;a]] for any element
m(z) € M[[z; a]].

(2) rr(mR) is pure as a right ideal in R for any element m € Mg.

(3) Mg is skew quasi-Armendariz of power series type.

Proof. (1) =(2) The proof is similar to that of Theorem 2.5.

(2)=(3) Assume that m(z)R[[z; o] f(z) = 0 for m(z) = > ;= miz’ € M|[z;]] and
fle) =377, ajz? € R[[x;a]]. Then m(z)Rf(z) = 0 and so we have the following
equation for an arbitrary ¢ € R:

(3) i( > mimicajxj) = i ( > miai(caj)xiﬂ) =0.

k=0 VNit+j=k k=0 Nitj=k

We will show that m;Ra; = 0 for all 7,j. We proceed by induction on ¢ + j.
From Eq.(3), we obtain, mgRag = 0. This proves ¢ + 7 = 0. Now suppose that
m;Ra; = 0 for i +j < n —1. Hence a; € rg(m;R) for j = 0,1,---,n — 1 and
i=20,1,---,n—1—j. Since rgr(m;R) is left s-unital, there exists ej; € rr(m;R)
such that ej;a; = a; for j=0,1,--- ,n—landi=0,1,--- ,n—1—j. From Eq.(3),
we have:

(4) Z m;at(ca;) =0 forall k>0.
it+j=k

If we put f; = ejiejo---ejpn_1—j for j = 0,1,---,n — 1, then fja; = a; and
fi € rr(moR) Nrr(miR) N --- Nrg(my_1—;R). For k = n replacing ¢ by cfy
in Eq.(4), we obtain m,cag = my,cfoap = 0. Hence m, Rag = 0. Continuing this
process (replacing c by cf; in Eq.(4), for j =0, 1,--- ,n—1 and using a-compatibility
of MR), we obtain m; Ra; = 0 for i+j = n. Therefore Mg, is skew quasi-Armendariz
of power series type. O

Since quasi-Baer modules satisfy the hypothesis of Theorem 2.5 and Proposition
2.10 we have,
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Corollary 2.11([9, Theorem 2.13(1)]). Let Mg be an a-compatible module. Then
Mp is quasi-Baer iff M[x; o] pz;a) s quasi-Baer iff M[[x; o] gljz;a)) 95 quasi-Baer.

Proof. The proof follows very similar to that of Corollary 2.6. O

Corollary 2.12([2, Theorem 7(1)(b)]). Let Mg be an a-compatible module. If
M{[z; o] R{[z;0)) S P-q.-Baer then My is p.q.-Baer.

3. Skew Laurent polynomial and power series modules over quasi-Baer
and p.q.-Baer modules

In this section we introduce skew quasi-Armendariz of Laurent type modules
ans skew quasi-Armendariz of Laurent power series type modules, which are skew
Laurent polynomial version of the quasi-Armendariz modules and then study on the
relationship between the quasi-Baerness and p.q.-Baer property of a module Mp
and those of the skew Laurent polynomials and skew Laurent series. As a conse-
quence we obtain a generalization of [2] and some result in [9].

Definition 3.1. Let o be an automorphism of R. A module Mg is called:

(i) skew quasi-Armendariz of Laurent type, if whenever m(x)R[z, 2™t a]f(x) = 0
for m(z) = Z:Z_S mizt € M[z,z~ % a] and f(z) = Z?:_p ajz! € Rlz,z™Yal,
then m;Ra; = 0 for all ¢, j.

(i) skew quasi-Armendariz of Laurent power series type if whenever m(z) R[[z, 2 1; o]
f(z) = 0 for m(z) = 352 mzt € M{z,z%;a]] and f(z) = Y ajzl €
R[[z,z%; a]], then m;Ra; = 0 for all 4, j.

oo
Jj=—p

Note that if Mg is assumed to be a-reduced, then it is clear that Mg is skew
quasi-Armendariz of Laurent type and skew quasi-Armendariz of Laurent power
series type. In a similar way as in the proof of Proposition 2.2 and Theorem 2.5,
we can prove the following results.

Proposition 3.2. Let a be an automorphism of a ring R and Mg be an «-
compatible module. Then the following statements are equivalent:
(1) My is skew quasi-Armendariz of Laurent type.
(2) ¢ : rAnng(sub(MRg)) — rAnngp, p-1.q)(sub(M [z, 271 o ple u—1;01));
I — I[z,z7 % a] is bijective.

Proposition 3.3. Let a be an automorphism of a ring R and Mg be an «-
compatible module. Then the following statements are equivalent:
(1) Mg is skew quasi-Armendariz of Laurent power series type.
(2) ¢ : rAnng(sub(Mg)) — rAnn g, o-1.q)) (Sub(M [z, 27 o]l g o-1,00))):
I — I[[x,271;a]] is bijective.

Theorem 3.4. Let o be an automorphism of a ring R and Mg be an a-compatible
module. Then the following are equivalent:

(1) rr(mR) is pure as a right ideal in R for any element m € Mg.

(2) TRiz,z—1;0) (M(7) R[2, x71;al) is a pure as a right ideal in Rlx,z71;a] for any
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elementm(z) € M[z,x~ ;). In this case Mg is skew quasi-Armendariz of
Laurent type.

Corollary 3.5. Let a be an automorphism of a ring R and Mg be an a-compatible
module. Then Mpg is p.q.-Baer if and only if M[z,x~1; Q) Rlz,2-1;0] 15 p-q.-Baer. In
this case Mg is skew quasi-Armendariz of Laurent type.

Remark 3.6. Since a-reduced modules are a-compatible modules, the Corollary
3.5 extends [2, Theorem 7(2)(a)].

Proposition 3.7. Let a be an automorphism of a ring R and Mg be an a-

compatible module. Then (1)=(2)=(3).

(1) rR{z,z-1;0) (M(@)R[[x, 275 a]]) is a pure as a right ideal in R[[z,z~"; o]] for
any element m(z) € M[[x,z71; o).

(2) rr(mR) is pure as a right ideal in R for any element m € Mp.

(3) Mg is skew quasi-Armendariz of Laurent power series type.

Corollary 3.8([2, Theorem 7(2)(b)]). Let a be an automorphism of a ring R and
Mg be an a-compatible module. If M[[x,z~; ]| R[22~ 1:a]] 5 P-q.-Baer then Mg is
p.q.-Baer.

Since quasi-Baer modules satisfy the hypothesis of Theorem 3.4 and Proposition
3.7 we have;

Corollary 3.9([9, Theorem 2.13(2)]. Let o be an automorphism of a ring R and
Mpg be an a-compatible module. Then Mg is quasi-Baer iff M[xw_l;a]R[,w—l;a]
is quasi-Baer iff M([x,27"; o] gjz,0-1;a)) is quasi-Baer.

Corollary 3.10([9, Corollary 2.14]). Mg is quasi-Baer iff M [x] g is quasi-Baer iff

M{[z]] rija) is quasi-Baer iff Mz, x| gy o-1) is quasi-Baer iff M|[z, 2™ ]| giz,o-1)
18 quasi-Baer.

Corollary 3.11([4, Theorem 1.8]). R is quasi-Baer iff R[x] is quasi-Baer iff R[[z]]
is quasi-Baer iff R[x,z~] is quasi-Baer iff R[[x,2~']] is quasi-Baer.

Acknowledgment. The authors would like to thank the referee for helpful com-
ments and suggestions.
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